AimsWe imaged the sub-mm distribution of labile P and pH in the rhizosphere of three plant species to localize zones and hot spots of P depletion and accumulation along individual root axes and to relate our findings to nutrient acquisition / root exudation strategies in P-limited conditions at different soil pH, and to mobilization pattern of other elements (Al, Fe, Ca, Mg, Mn) in the rhizosphere.MethodsSub-mm distributions of labile elemental patterns were sampled using diffusive gradients in thin films and analysed using laser ablation inductively coupled plasma mass spectrometry. pH images were taken using planar optodes.ResultsWe found distinct patterns of highly localized labile P depletion and accumulation reflecting the complex interaction of plant P acquisition strategies with soil pH, fertilizer treatment, root age, and elements (Al, Fe, Ca) that are involved in P biogeochemistry in soil. We show that the plants respond to P deficiency either by acidification or alkalization, depending on initial bulk soil pH and other factors of P solubility.ConclusionsP solubilization activities of roots are highly localized, typically around root apices, but may also extend towards the extension / root hair zone.Electronic supplementary materialThe online version of this article (10.1007/s11104-017-3542-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.