The High Asia Refined analysis (HAR) is a regional atmospheric data set generated by dynamical downscaling of the Final operational global analysis (FNL) using the Weather Research and Forecasting (WRF) model. It has been successfully and widely utilized. A new version (HAR v2) with longer temporal coverage and extended domains is currently under development. ERA5 reanalysis data is used as forcing data. This study aims to find the optimal setup for the production of the HAR v2 to provide similar or even better accuracy as the HAR. First, we conducted a sensitivity study, in which different cumulus, microphysics, planetary boundary layer, and land surface model schemes were compared and validated against in situ observations. The technique for order preference by similarity to the ideal solution (TOPSIS) method was applied to identify the best schemes. Snow depth in ERA5 is overestimated in High Mountain Asia (HMA) and causes a cold bias in the WRF output. Therefore, we used Japanese 55-year Reanalysis (JRA-55) to correct snow depth initialized from ERA5 based on the linear scaling approach. After applying the best schemes identified by the TOPSIS method and correcting the initial snow depth, the model performance improves. Finally, we applied the improved setup for the HAR v2 and computed a oneyear run for 2011. Compared to the HAR, the HAR v2 has a better representation of air temperature at 2 m. It produces slightly higher precipitation amounts, but the spatial distribution of seasonal mean precipitation is closer to observations.
<p>Climatic-triggered natural hazards such as landslides and glacier lake outburst floods pose a threat to human lives in the third pole region. Availability of accurate climate data with high spatial and temporal resolution is crucial for better understanding climatic triggering mechanisms of these localized natural hazards. Within the framework of the project &#8220;Climatic and Tectonic Natural Hazard in Central Asia&#8221; (CaTeNA), High Asia Refined analysis version 2 (HAR v2) is under production, and is freely available upon request. HAR v2 is a regional atmospheric data set generated by dynamical downscaling of global ERA5 reanalysis data using the Weather Research and Forecasting (WRF) model. Compared to its predecessor (HAR), HAR v2 has an extended 10 km domain covering the Tibetan Plateau and the surrounding mountains, as well as a longer temporal coverage. It will be extended back to 1979, and will be continuously updated in the future. This presentation will contain the following aspects: (1) summarizing the WRF configuration; (2) validating HAR v2 against observational data; (3) comparing HAR v2 with other gridded data sets, such as the newly developed ERA5-Land reanalysis data; (4) providing information about data format, variable list, data access, etc.&#160;&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.