The electrical properties of the different anatomical types of retinal ganglion cells in the cat were calculated on the basis of passive cable theory from measurements made on histological material. Standard values for the electrical parameters were assumed (R 1 = 70 Ω cm, C m = 2 μF cm -2 , R m = 2500 Ω cm 2 ). We conclude that these neurons need not be equipotential despite their small dimensions, mainly because of their extensive branching. The interactions between excitation and inhibition when the inhibitory battery is near the resting potential can be strongly nonlinear in these cells. To characterize the different types of ganglion cells in terms of this property we introduce the factor by which the soma depolarization induced by a given excitatory input is reduced by inhibition. In this framework we analyse some of the integrative properties of an arbitrary passive dendritic tree and we then derive the functional properties that are characteristic for the various types of ganglion cells. Our main results are: (i) Nonlinear saturation at the synapses may be made effectively smaller by spreading the same (conductance) input among several subunits on the dendritic field. Subunits are defined as regions of the dendritic field that are somewhat isolated from each other and roughly equipotential within. (ii) Shunting inhibition can specifically veto an excitatory input, if it is located on the direct path to the soma. The F values can then be very high even when the excitatory inputs are much larger than the inhibitory, as long as the absolute value of inhibition is not too small. Inhibition more distal than excitation is much less effective. (iii) Specific branching patterns coupled with suitable distribution of synapses are potentially able to support complex information processing operations on the incoming excitatory and inhibitory signals. The quantitative analysis of the morphology of cat retinal ganglion cells leads to the following specific conclusions: (i) None of the cells examined satisfies Rail’s equivalent cylinder condition. The dendritic tree cannot be satisfactorily approximated by a non-tapering cylinder. (ii) Under the assumption of a passive membrane, the dendritic architecture of the different types of retinal ganglion cells reflects characteristically different electrical properties, which are likely to be relevant for their physiological function and their information processing role: ( a ) α cells have spatially inhomogeneous electrical properties, with many subunits. Within each subunit nonlinear effects may take place; between subunits good linear summation is expected. F values are relatively low. ( b ) β cells at small eccentricities have rather homogeneous electrical properties. Even distal inputs are weighted rather uniformly. Electrical inhomogeneities of the a type appear for P cells at larger eccentricities. F values are low. ( c ) γ-like cells have few subunits, each with high input resistance underlying nonlinear saturation effects possibly related to a sluggish character. F values are high: inhibition of the shunting type can interact in a strongly nonlinear way with excitatory conductance inputs. ( d ) δ-like cells show many subunits with a high input resistance, covering well the dendritic area. Within each subunit inhibition on the direct path to the soma can specifically veto a more distal excitation. It is conjectured that such a synaptic organization superimposed on the δ cell morphology underlies directional selectivity to motion. (iii) Most of our data refer to steady-state properties. They probably apply, however, to all light evoked signals, since transient inputs with time to peak of 30 ms or more can be treated in terms of steady-state properties of the ganglion cells studied. (iv) All our results are affected only slightly by varying the parameter values within reasonable ranges. If, however, the membrane resistance were very high, all ganglion cells would approach equipotentiality. For R m = 8000 Ω cm 2 subunits essentially disappear in all types of ganglion cells (for steady state inputs). Our results concerning nonlinear interaction of excitation and inhibition ( values) would, however, remain valid even for much larger values of R m and for any value of R 1 larger than 30-50 Ω cm. The critical requirement is that peak inhibitory conductance changes must be sufficiently large (around 5 x 10 -8 S) with an equilibrium potential close to the resting potential. Underestimation of the diameters of the dendritic branches may affect these conclusions ( F could be significantly lower).
Lymphocytes infiltrate the stroke core and penumbra and often exacerbate cellular injury. B cells, however, are lymphocytes that do not contribute to acute pathology but can support recovery. B cell adoptive transfer to mice reduced infarct volumes 3 and 7 d after transient middle cerebral artery occlusion (tMCAo), independent of changing immune populations in recipient mice. Testing a direct neurotrophic effect, B cells cocultured with mixed cortical cells protected neurons and maintained dendritic arborization after oxygen-glucose deprivation. Whole-brain volumetric serial two-photon tomography (STPT) and a custom-developed image analysis pipeline visualized and quantified poststroke B cell diapedesis throughout the brain, including remote areas supporting functional recovery. Stroke induced significant bilateral B cell diapedesis into remote brain regions regulating motor and cognitive functions and neurogenesis (e.g., dentate gyrus, hypothalamus, olfactory areas, cerebellum) in the whole-brain datasets. To confirm a mechanistic role for B cells in functional recovery, rituximab was given to human CD20+(hCD20+) transgenic mice to continuously deplete hCD20+-expressing B cells following tMCAo. These mice experienced delayed motor recovery, impaired spatial memory, and increased anxiety through 8 wk poststroke compared to wild type (WT) littermates also receiving rituximab. B cell depletion reduced stroke-induced hippocampal neurogenesis and cell survival. Thus, B cell diapedesis occurred in areas remote to the infarct that mediated motor and cognitive recovery. Understanding the role of B cells in neuronal health and disease-based plasticity is critical for developing effective immune-based therapies for protection against diseases that involve recruitment of peripheral immune cells into the injured brain.
Fractalkine (CX3CL1 or FKN) is a membrane-bound chemokine expressed on neuronal membranes and is proteolytically cleaved to shed a soluble chemoattractant domain. FKN signals via its unique receptor CX3CR1 expressed on microglia and other peripheral leukocytes. The aim of this study is to determine the role of CX3CR1 in inflammatory-mediated damage to retinal neurons using a model of diabetic retinopathy. For this, we compared neuronal, microglial, and astroglial densities and inflammatory response in nondiabetic and diabetic (Ins2Akita) CX3CR1-wild-type and CX3CR1-deficient mice at 10 and 20 weeks of age. Our results show that Ins2Akita CX3CR1-knockout mice exhibited (a) decreased neuronal cell counts in the retinal ganglion cell layer, (b) increased microglial cell numbers, and (c) decreased astrocyte responses comparable with Ins2Akita CX3CR1-Wild-type mice at 20 weeks of age. Analyses of the inflammatory response using PCR arrays showed several inflammatory genes differentially regulated in diabetic tissues. From those, the response in Ins2Akita CX3CR1-deficient mice at 10 weeks of age revealed a significant upregulation of IL-1β at the transcript level that was confirmed by enzyme-linked immunosorbent assay in soluble retinal extracts. Overall, IL-1β, VEGF, and nitrite levels as a read out of nitric oxide production were abundant in Ins2Akita CX3CR1-deficient retina. Notably, double immunofluorescence staining shows that astrocytes act as a source of IL-1β in the Ins2Akita retina, and CX3CR1-deficient microglia potentiate the inflammatory response via IL-1β release. Collectively, these data demonstrate that dysregulated microglial responses in absence of CX3CR1 contribute to inflammatory-mediated damage of neurons in the diabetic retina.
Multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS) is the leading cause of non-traumatic neurological disability in young adults. Immune mediated destruction of myelin and oligodendrocytes is considered the primary pathology of MS, but progressive axonal loss is the major cause of neurological disability. In an effort to understand microglia function during CNS inflammation, our laboratory focuses on the fractalkine/CX3CR1 signaling as a regulator of microglia neurotoxicity in various models of neurodegeneration. Fractalkine (FKN) is a transmembrane chemokine expressed in the CNS by neurons and signals through its unique receptor CX3CR1 present in microglia. During experimental autoimmune encephalomyelitis (EAE), CX3CR1 deficiency confers exacerbated disease defined by severe inflammation and neuronal loss. The CX3CR1 human polymorphism I249/M280 present in ∼20% of the population exhibits reduced adhesion for FKN conferring defective signaling whose role in microglia function and influence on neurons during MS remains unsolved. The aim of this study is to assess the effect of weaker signaling through hCX3CR1I249/M280 during EAE. We hypothesize that dysregulated microglial responses due to impaired CX3CR1 signaling enhance neuronal/axonal damage. We generated an animal model replacing the mouse CX3CR1 locus for the hCX3CR1I249/M280 variant. Upon EAE induction, these mice exhibited exacerbated EAE correlating with severe inflammation and neuronal loss. We also observed that mice with aberrant CX3CR1 signaling are unable to produce FKN and ciliary neurotrophic factor during EAE in contrast to wild type mice. Our results provide validation of defective function of the hCX3CR1I249/M280 variant and the foundation to broaden the understanding of microglia dysfunction during neuroinflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.