Abstract. Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1) no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM) implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation), developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, the Wahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.
DARWIN2.3 is the French reference package dedicated to fuel cycle applications, computing fuel inventory as well as decay heat, neutron emissions, α, β and γ spectra. The DARWIN2.3 package fuel inventory calculation was experimentally validated with Post-Irradiation Experiments (PIEs), mainly consisting in irradiated fuel pellets analysis. This paper presents a method to assimilate these integral trends for improving nuclear data. In this study, the method is applied to 137Cs/238U concentration ratio. Results suggest an increase of the JEFF-3.1.1 235U cumulated thermal fission yield in 137Cs by (+3.8 ± 2.1)%, from 6.221E-02 to 6.460E-02 ± 2.1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.