OBJECTIVE. Cytokines and other inflammatory mediators are involved in the pathogenesis of otitis media. We hypothesized that polymorphisms in inflammatory response genes contribute to the increased susceptibility to acute otitis media in otitis-prone children. PATIENTS AND METHODS. DNA samples from 348 children with ≥2 acute otitis media episodes, who were participating in a randomized, controlled vaccination trial, and 463 healthy adult controls were included. Polymorphisms in TNFA, IL1B, IL4, IL6, IL10, IL8, NOS2A, C1INH, PARP, TLR2, and TLR4 were genotyped. Genotype distributions in children with recurrent acute otitis media were compared with those in controls. Within the patient group, the number of acute otitis media episodes before vaccination and the clinical and immunologic response to pneumococcal conjugate vaccinations were analyzed. RESULTS. The IL6-174 G/G genotype was overrepresented in children with acute otitis media when compared with controls. In the patient group, TNFA promoter genotypes −238 G/G and −376 G/G and the TLR4 299 A/A genotype were associated with an otitis-prone condition. Furthermore, lower specific anticapsular antibody production after complete vaccination was observed in patients with the TNFA-238 G/G genotype or TNFA-863 A allele carriage. Finally, the IL10-1082 A/A genotype contributed to protection from the recurrence of acute otitis media after pneumococcal vaccination. CONCLUSIONS. Variation in innate immunoresponse genes such as TNFA-863A, TNFA-376G, TNFA-238G, IL10-1082 A, and IL6-174G alleles in the promoter sequences may result in altered cytokine production that leads to altered inflammatory responses and, hence, contributes to an otitis-prone condition.
Background Plasmodium falciparum Apical Membrane Antigen 1 (PfAMA1) is a candidate vaccine antigen expressed by merozoites and sporozoites. It plays a key role in red blood cell and hepatocyte invasion that can be blocked by antibodies.Methodology/Principal FindingsWe assessed the safety and immunogenicity of recombinant PfAMA1 in a dose-escalating, phase Ia trial. PfAMA1 FVO strain, produced in Pichia pastoris, was reconstituted at 10 µg and 50 µg doses with three different adjuvants, Alhydrogel™, Montanide ISA720 and AS02 Adjuvant System. Six randomised groups of healthy male volunteers, 8–10 volunteers each, were scheduled to receive three immunisations at 4-week intervals. Safety and immunogenicity data were collected over one year. Transient pain was the predominant injection site reaction (80–100%). Induration occurred in the Montanide 50 µg group, resulting in a sterile abscess in two volunteers. Systemic adverse events occurred mainly in the AS02 groups lasting for 1–2 days. Erythema was observed in 22% of Montanide and 59% of AS02 group volunteers. After the second dose, six volunteers in the AS02 group and one in the Montanide group who reported grade 3 erythema (>50 mm) were withdrawn as they met the stopping criteria. All adverse events resolved. There were no vaccine-related serious adverse events. Humoral responses were highest in the AS02 groups. Antibodies showed activity in an in vitro growth inhibition assay up to 80%. Upon stimulation with the vaccine, peripheral mononuclear cells from all groups proliferated and secreted IFNγ and IL-5 cytokines.Conclusions/SignificanceAll formulations showed distinct reactogenicity profiles. All formulations with PfAMA1 were immunogenic and induced functional antibodies.Trial RegistrationClinicaltrials.gov NCT00730782
Streptococcus pneumoniae is an important cause of morbitity and mortality worldwide. Capsule-specific IgG1 and IgG2 Abs are induced upon vaccination with polysaccharide-based vaccines that mediate host protection. We compared the protective capacity of human recombinant serogroup 6-specific IgG1 and IgG2 Abs in mice deficient for either leukocyte FcR or complement factors. Human IgG1 was found to interact with mouse leukocyte FcR in vitro, whereas human IgG2 did not. Both subclasses induced complement activation, resulting in C3c deposition on pneumococcal surfaces. Passive immunization of C57BL/6 mice with either subclass before intranasal challenge with serotype 6A induced similar degrees of protection. FcgammaRI- and III-deficient mice, as well as the combined FcgammaRI, II, and III knockout mice, were protected by passive immunization, indicating FcR not to be essential for protection. C1q or C2/factor B knockout mice, however, were not protected by passive immunization. Passively immunized C2/factor B(-/-) mice displayed higher bacteremic load than C1q(-/-) mice, supporting an important protective role of the alternative complement pathway. Spleens from wild-type and C1q(-/-) mice showed hyperemia and thrombotic vessel occlusion, as a result of septicemic shock. Notably, thrombus formation was absent in spleens of C2/factor B(-/-) mice, suggesting that the alternative complement pathway contributes to shock-induced intravascular coagulation. These studies demonstrate complement to play a central role in Ab-mediated protection against pneumococcal infection in vivo, as well as in bacteremia-associated thrombotic complications.
Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a leading blood stage vaccine candidate. Plasmodium knowlesi AMA1 (PkAMA1) was produced and purified using similar methodology as for clinical grade PfAMA1 yielding a pure, conformational intact protein. Combined with the adjuvant CoVaccine HT™, PkAMA1 was found to be highly immunogenic in rabbits and the efficacy of the PkAMA1 was subsequently tested in a rhesus macaque blood-stage challenge model. Six rhesus monkeys were vaccinated with PkAMA1 and a control group of 6 were vaccinated with PfAMA1. A total of 50 µg AMA1 was administered intramuscularly three times at 4 week intervals. One of six rhesus monkeys vaccinated with PkAMA1 was able to control parasitaemia, upon blood stage challenge with P. knowlesi H-strain. Four out of the remaining five showed a delay in parasite onset that correlated with functional antibody titres. In the PfAMA1 vaccinated control group, five out of six animals had to be treated with antimalarials 8 days after challenge; one animal did not become patent during the challenge period. Following a rest period, animals were boosted and challenged again. Four of the six rhesus monkeys vaccinated with PkAMA1 were able to control the parasitaemia, one had a delayed onset of parasitaemia and one animal was not protected, while all control animals required treatment. To confirm that the control of parasitaemia was AMA1-related, animals were allowed to recover, boosted and re-challenged with P. knowlesi Nuri strain. All control animals had to be treated with antimalarials by day 8, while five out of six PkAMA1 vaccinated animals were able to control parasitaemia. This study shows that: i) Yeast-expressed PkAMA1 can protect against blood stage challenge; ii) Functional antibody levels as measured by GIA correlated inversely with the day of onset and iii) GIA IC50 values correlated with estimated in vivo growth rates.
Macrophages are known to play a key role during inflammation in rheumatoid arthritis (RA). Inflammatory macrophages have increased expression of CD64, the high-affinity receptor for IgG. Targeting this receptor through a CD64-directed immunotoxin, composed of an Ab against CD64 and Ricin A, results in effective killing of inflammatory macrophages. In this study, we show elevated levels of CD64 on synovial macrophages in both synovial lining and synovial fluid in RA patients. The CD64-directed immunotoxin efficiently eliminates activated synovial macrophages in vitro, while leaving quiescent, low CD64-expressing macrophages unaffected. To examine whether killing of CD64 macrophages results in therapeutic effects in vivo, we established an adjuvant arthritis (AA) model in newly generated human CD64 (hCD64) transgenic rats. We demonstrate that hCD64 regulation in this transgenic rat model is similar as in humans. After AA induction, treatment with CD64-directed immunotoxin results in significant inhibition of disease activity. There is a direct correlation between immunotoxin treatment and decreased macrophage numbers, followed by diminished inflammation and bone erosion in paws of these hCD64 transgenic rats. These data support synovial macrophages to play a crucial role in joint inflammation in AA in rats and in human RA. Selective elimination of inflammatory macrophages through a CD64-directed immunotoxin may provide a novel approach for treatment of RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.