To reduce the retention of undersized fish in the redfish (Sebastes spp.) trawl fishery in the Gulf of St. Lawrence, Canada, we developed a full-scale shaking codend. The shaking codend uses a mechanical stimulating device, an elliptical-shaped piece of polyvinyl chloride canvas, attached to the posterior of a T90 codend that generates a lifting force with respect to drag, causing a ‘shaking motion’. A shaking codend could stimulate fish movement and increase contact probability, both of which could increase the escape of small redfish out of a codend, especially when combined with a codend that maintains mesh openings. The movement and fishing characteristics of a shaking codend (T90 codend with canvas) relative to a T90 codend (without canvas) were tested in a flume tank and field experiment. In the flume tank test, the shaking codend had a peak-to-peak amplitude (i.e. the distance the codend moves from the lowest to highest depth) > 24 cm higher than the T90 codend for each velocity tested (1.0–1.8 kt), higher amplitude ratio, and a higher period (1 revolution) that gradually decreased with increasing velocity. The total acceleration (m s-2) and drag forces (kgf) estimated for the shaking codend were significantly higher than the T90 codend across all flow velocities. The results from the field experiment, considered preliminary due to a small sample size, showed that the shaking codend significantly reduced the capture of small redfish (< 21 cm) and the best fit model did not need to consider contact probability which was necessary for the non-shaking T90 codend. Overall, the dynamics of the movement of the codend was described and could be potentially used as an effective technique to reduce the catch of small redfish, and perhaps in other trawl fisheries to reduce the catch of small fish.
In this study, we used escape location underneath the trawl to understand groundfish herding behaviour at the trawl mouth. Three collecting bags (port, center, starboard) were mounted under the trawl and behind the footgear to collect escapees. The escape-at-length of species that escaped into the center bag were compared to the two wing bags to infer fish response behaviour, herding behaviour, and swimming capacity at the trawl mouth. For roundfish, smaller-sized individuals escaped more in the center for both Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus), <20 and 11 cm, respectively, indicating that larger-sized fish were to a greater extent seeking to escape under the trawl at the wings, vs small fish being herded to the center and likely overrun due to reduced swimming capacity. For flatfish and monkfish (Lophius piscatorius), results varied. European plaice (Pleuronectes platessa), American plaice (Hippoglossoides platessoides), and monkfish were caught most often in the wings, though not significantly for American plaice. Catches of dab (Limanda limanda) between 18 and 27 cm were significantly higher in the center, with no difference for smaller and larger individuals. The differences between fish escape location likely result from a combination of varying herding behaviour, size, and swimming capacity. Here, we were able to show how these size-dependent behaviours relate to fish response behaviour, escape behaviour, size, and likely swimming capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.