Various human activities lead to the pollution of ground, drinking, and wastewater with toxic metals. It is well known that metal ions preferentially bind to DNA phosphate backbones or DNA nucleobases, or both. Foreman et al. (Environ Toxicol Chem 30(8):1810-1818, 2011) reported the use of a DNA-dye based assay suitable for use as a toxicity test for potable environmental water. They compared the results of this test with the responses of live-organism bioassays. The DNA-based demonstrated that the loss of SYBR Green I fluorescence dye bound to calf thymus DNA was proportional to the toxicity of the water sample. However, this report raised questions about the mechanism that formed the basis of this quasi-quantitatively test. In this review, we identify the unique and preferred DNA-binding sites of individual metals. We show how highly sensitive and selective DNA-based sensors can be designed that contain multiple binding sites for 21 heavy metal cations that bind to DNA and change its structure, consistent with the release of the DNA-bound dye.
Knowing how readily the skin produces melanin is invaluable in reducing photochemical and phototherapy overtreatment in dermatology and also in reducing the risk of actinic skin damage and skin cancer from excessive radiant light exposure. The commonly used Fitzpatrick skin type (FST) classification scale is often used to subjectively assess ultraviolet light sensitivity and susceptibility to sunburn following significant sunlight exposure. However, the FST scale falls short in the assessment of nonwhite skin types. Alternatively, commercially available melanin sensor devices, called melanometers, can be used to objectively quantify useful skin parameters such as the epidermal melanin concentration (EMC). This study reviews commercially available melanometers and their use in quantifying epidermal melanin concentration (EMC) and the individual maximum safe radiant exposure (IMSRE) for an individual in clinical, workplace and community settings.
Even when present in very low concentrations, certain metal ions can have significant health impacts depending on their concentration when present in drinking water. In an effort to detect and identify trace amounts of such metals, environmental monitoring has created a demand for new and improved methods that have ever-increasing sensitivities and selectivity. This paper reviews the sensitivities of over 100 recently published biosensors using various analytical techniques such as fluorescence, voltammetry, inductively coupled plasma techniques, spectrophotometry and visual colorimetric detection that display selectivity for copper, cadmium, lead, mercury and/or aluminium in aqueous solutions.
Chemical toxicants, particularly metal ions, are a major contaminant in global waterways. Live-organism bioassays used to monitor chemical toxicants commonly involve measurements of activity or survival of a freshwater cladoceran (Ceriodaphnia dubia) or light emitted by the marine bacterium Vibrio fischeri, used in the commercial Microtox® bioassay. Here we describe a novel molecule-based assay system employing DNA as the chemical biosensor. Metals bind to DNA, causing structural changes that expel a bound (intercalated) fluorescent reporter dye. Analyses of test data using 48 wastewater samples potentially contaminated by metal ions show that the DNA-dye assay results correlate with those from C. dubia and Microtox bioassays. All three assays exhibit additive, antagonistic, and synergistic responses that cannot be predicted by knowing individual metal concentrations. Analyses of metals in these samples imply the presence of chemical toxicants other than metal ions. The DNA-dye assay is robust, has a 12-month shelf life, and is only slightly affected by sample pH in the range 4 to 9. The assay is completed in a matter of minutes, and its portability makes it well suited as a screening assay for use in the field. We conclude that the DNA-dye test is a surrogate bioassay suitable for screening chemical toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.