Helicobacter pylori is responsible for the most commonly found infection in the world's population. It is the major risk factor for gastric cancer development. Numerous studies published over the last year provide new insights into the strategies employed by H. pylori to adapt to the extreme acidic conditions of the gastric environment, to establish persistent infection and to deregulate host functions, leading to gastric pathogenesis and cancer. In this review, we report recent data on the mechanisms involved in chemotaxis, on the essential role of nickel in acid resistance and gastric colonization, on the importance of adhesins and Hop proteins and on the role of CagPAI-components and CagA. Among the host functions, a special focus has been made on the escape from immune response, the ability of bacteria to induce genetic instability and modulate telomeres, the mechanism of autophagy and the deregulation of micro RNAs.
a b s t r a c tWe have previously identified the expression of an estradiol (E2)-related molecule by Schistosoma haematobium total antigen (Sh). We now show that this molecule has an antagonistic effect of estradiol in vitro. Our results are consistent with the existence of an estrogenic molecule that antagonizes the activity of estradiol. We found evidence for this molecule as we identified and characterized by mass spectrometry new estrogenic molecules previously unknown, present in schistosome worm extracts and sera of Schistosoma-infected individuals. We also show that Sh is able to interact in vitro with estrogen receptor (ER), explaining how host endocrine system can favor the establishment of schistosomes. These findings highlight the exploitation of the host endocrine system by schistosomes and represent an additional regulatory component of schistosome development that defines a novel paradigm enabling host-parasite interactions. The identification of these molecules opens new ways for the development of alternative drugs to treat schistosomiasis.
Helicobacter pylori infection induces intestinal metaplasia of the stomach, a preneoplastic lesion associated with an increased risk for gastric cancer development. Intestinal metaplasia is induced by the intestine-specific transcription factor CDX2 but the mechanisms responsible for this ectopic expression have never been described. We hypothesized that the BMP/SMAD pathway has a role in CDX2 regulation, in this context, for the following reasons: (1) the BMP pathway is crucial for normal intestinal differentiation and (2) there is an influx of BMP2 and BMP4-producing cells to the stomach upon Helicobacter pylori infection. We evaluated the expression of key elements of the BMP pathway in human stomach specimens with IM. Growth factor treatments, with BMP2 and BMP4, were performed in cultured cells and a knock-down experiment of SMAD4 was done using RNAi. We showed overexpression in IM of BMP2/4, BMPR1A, and SMAD4 in 56% of IM foci, and pSMAD1/5/8 in 100% of IM foci as compared to adjacent mucosa. In vitro, treatment of AGS cells with BMP2 and BMP4 increased endogenous CDX2 expression as well as the intestinal differentiation markers MUC2 and LI-cadherin. On the other hand, SMAD4 knock-down led to decreased endogenous CDX2, MUC2, and LI-cadherin in AGS. Treatment of the SMAD4 knock-down cells had no influence on CDX2 expression as opposed to wild-type cells. A 9.3 kb CDX2 promoter could be transactivated by SMAD4 and SMAD1 in a cell-dependent manner. In conclusion, we identified for the first time that the BMP pathway is active in intestinal metaplasia and that BMP2 and BMP4 regulate CDX2 expression and promote intestinal differentiation through the canonical signal transducers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.