Microbial fuel cells (MFCs) represent a novel platform for treating wastewater and at the same time generating electricity. Using Pseudomonas
putida (BCRC 1059), a wild-type bacterium, we demonstrated that the refinery wastewater could be treated and also generate electric current in an air-cathode chamber over four-batch cycles for 63 cumulative days. Our study indicated that the oil refinery wastewater containing 2213 mg/L (ppm) chemical oxygen demand (COD) could be used as a substrate for electricity generation in the reactor of the MFC. A maximum voltage of 355 mV was obtained with the highest power density of 0.005 mW/cm2 in the third cycle with a maximum current density of 0.015 mA/cm2 in regard to the external resistor of 1000 Ω. A maximum coulombic efficiency of 6 × 10−2% was obtained in the fourth cycle. The removal efficiency of the COD reached 30% as a function of time. Electron transfer mechanism was studied using cyclic voltammetry, which indicated the presence of a soluble electron shuttle in the reactor. Our study demonstrated that oil refinery wastewater could be used as a substrate for electricity generation.
Anionic biosurfactant surfactin-mediated gold nanoparticles were synthesized for the first time in this study. Differing proton concentrations is believed to cause structural changes in the lipopeptide surfactin used to stabilize the gold nanoparticles in aqueous solution, the effects of which on the morphology of the nanoparticles were investigated. Synthesis of gold nanoparticles by borohydrate reduction was performed at three pH levels (pH 5, 7 and 9) and two different temperatures, and the nanoparticles were characterized by UV-visible spectroscopy, X-ray diffraction and transmission electron microscopy. The UV-vis spectra showed a blue shift with increasing pH from 5 to 9 (from 528 to 566 nm) at both 4 degrees C and room temperature. The nanoparticles synthesized at pH 7 and 9 remained stable for 2 months, while aggregates were observed at pH 5 within 24 h. TEM micrographs revealed that the mean particle size was about 13.11, 8.16 and 4.70 nm at pH 5, 9 and 7, respectively, at 4 degrees C. The nanoparticles formed at pH 7 were uniform in shape and size, and polydispersed and anisotropic at pH 5 and 9. The nanoparticles synthesized at room temperature were monodispersed and were more uniform as compared with those formed at 4 degrees C. This report describes the use of a renewable and environmentally green and biodegradable surfactant as a template and stabilizing agent in the synthesis of gold nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.