The active power filter has been proved to be an effective method to mitigate harmonic currents generated by nonlinear loads as well as to compensate reactive power. The methods of harmonic current detection play a crucial part in the performance of active power filter (APF). This paper presents a new control strategy in which two shunt active power filter configurations are developed in order to define new simple control algorithm which requires minimum number of current measurements. The effectiveness of the proposed control strategies are demonstrated through results. The proposed systems are implemented with MATLAB/SIMULINK. The simulation results are presented for two control strategies and comparison is made among them.
In this study, clay composites were subjected to electromagnetic transmission testing at frequencies in the region of non-ionizing radiation. Specimens were made with partial substitution of clay with different admixtures by mass. Admixtures used were Fly Ash, four different particle sizes and phases of Titanium Dioxide (TiO2), Zinc Ferrite (ZnFe2O4), Maghemite (γ-Fe2O3) and Antimony Tin Oxide (ATO). The additives were thoroughly (chemically, structurally, morphologically) characterized. The replacement percentage was 5 wt.%. Electromagnetic transmission assessment included S21 transmission coefficient measurements for samples with different additives. The lowest transmission was reported for the clay specimens with ATO and Titanium Dioxide, especially at higher frequencies. A decrease in the transmission parameter with increasing specimen thickness was also confirmed.
In this article, an aperture antenna excited by a waveguide with a circular cross-section and covered with a dielectric plate was analyzed via simulation calculation and verified via measurements. The influence of the geometrical and electromagnetic parameters of the dielectric plate on the reflection coefficient S11 of the antenna opening was systematically analyzed. The geometrical parameters taken in this analysis are the thickness d and the width/length h1/h2 of the dielectric plate. The electromagnetic parameters used in this analysis are the real and the imaginary part of permittivity (εr, tan δ) and the electrical conductivity of the dielectric plate (σ). The simulation calculation and analysis included other structural and electromagnetic parameters of the dielectric plate (density of the radome material, relative permeability, and magnetic loss tangent (ρ, µr, and tan δµ, respectively)), but the results show that in the range of real values of these parameters for the materials used for the dielectric plate, they had no significant influence on the reflection coefficient. The results show that impedance-matched antennas with very low values of the reflection coefficients S11 at the resonant frequency can be realized by changing the geometrical and electromagnetic parameters of the dielectric plate material. The results are presented for a circular aperture antenna on a planar grounded plane with a dielectric plate on the opening, and the achieved lowest values of the S11 parameter were −45.17 dB (simulated) and −43.93 dB (measured) at the frequencies of 1.7820 GHz and 1.7550 GHz, respectively. The estimated values of the dielectric plate parameters in this case are thickness d = 11.08 mm (0.67 λ); width x length of grounded plane and dielectric plate h1 x h2 = 423 × 450 mm2 (2.51 × 2.67 λ); relative permittivity 2.5, tan δ = 0.09, μr = 1, tan δμ = 0.00, ρ = 1200 kg·m−3; and electrical conductivity σ = 0 S/m. The simulation calculation results were verified by measuring the reflection coefficient S11 on the created laboratory model of the aperture antenna with the dielectric plate and showed a very good match.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.