Owing to recent developments in the field of silver nanoparticle (AgNP) based conductive inks for inkjet printing, there is a growing demand for implementation of novel synthetic routes. This study presents a synthesis of silver colloid with an average particle diameter of less than 3 nm. AgNPs were obtained by a chemical reduction method, using hydrazine as a reducing agent, and poly(acrylic acid), (PAA), as a grainstabilizing agent. Synthesis was provided using highly concentrated aqueous solutions. To obtain PAA-coated silver nanopowder, weak organic acids were introduced as precipitation agents. The main goal of this work was to study the impact of various organic precipitants on nanosurface-adsorbed polyacid for enhanced ink stability, by implementing electrochemical techniques. Cyclic voltammetry and electrochemical impedance spectroscopy were the main methods in describing all steps of the procedure -from preliminary experiments to whole system characterization. For a comprehensive study of the nanoink suspension, dynamic light scattering (DLS) and electrokinetic potential measurements were carried out. The obtained results show, through a very apparent decrement in anodic current responses, the influence of different organic acid precipitants on nanoink destabilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.