Incorporation of dry-season crops in the lowland production systems of the Lower Mekong Basin (LMB) may provide local smallholder farmers the opportunity to increase household cash income through diversification. However, water availability and lowland rice-growing soil characteristics often limit the yield potential of dry-season crops in rotation with wet-season rice. This work studied the effects of three frequencies of irrigation on the crop performance of dry-season furrow-irrigated maize (Zea mays Linnaeus) and peanut (Arachis hypogaea Linnaeus) grown on lowland rice-growing soils in terms of biomass, yield and water productivity (WP). In addition, the response of maize to two fertiliser rates was evaluated. The study was carried out in sites with typical lowland rice-growing soils located in Cambodia and Laos. Soil matric potential (Ψm) was monitored during the season at the centre of the beds and percentage of canopy cover, aboveground biomass (AGB), yield and WP were determined. The results showed that within the first weeks of furrow irrigation (~two weeks after emergence), Ψm dropped considerably (<−200 kPa) after all treatments at both sites, suggesting that water movement from the furrows to the centre of the beds was limited. Shorter frequency of irrigation led to significantly (p < 0.05) higher AGB and yield in maize but not in peanut. Fertiliser rates did not have a significant effect on maize. WP ranged from 0.84 kg m−3 to 1.42 kg m−3 for maize and from 0.27 kg m−3 to 0.49 kg m−3 for peanut with no significant differences among treatments. This work provides evidence of a lateral water movement limitation that is not well documented for the establishment of furrow-irrigated dry-season crop production in the lowlands of the LMB. Further research on methodologies that could help to overcome this limitation in these soils, such as the application of soil amendments or implementation of alternative irrigation systems, would be of great value.
Growing vegetables after rice harvest allows Cambodian farmers to use land that would otherwise be unproductive between rice crops. Producing vegetables on these soils is limited by low soil pH, low cation exchange capacity and limited nutrient retention capacity. Soil pH in the top 20 cm is generally low (pH 5.5 H2O) and may limit the availability of nutrients. Farm-based trials in Siem Reap and Kampot provinces assessed the effect of lime and fertiliser on leafy vegetable crop growth and yield. At lime-only sites, lime was applied at rates of 0.5, 1.0 and 2.0 tonnes per hectare (t/ha) in conjunction with farmer practice fertiliser rates. For sites with lime and fertiliser treatments, combinations of farmer practice and optimal fertiliser rates, no lime and 2.0 t/ha of lime were applied. Two consecutive crops were planted at one site to examine the residual effect of lime on soil pH and crop yield. At lime-only sites, all crops responded to lime application with yield increases of up to 100%. For sites that assessed combinations of lime and fertiliser, the treatment of lime and optimum fertiliser rates showed the highest yield increase (92%). Application of 2.0 t/ha lime increased soil pH by approximately 1.0 unit. This effect was still evident after a second crop of Bok Choy. For the 0.5 t/ha lime treatment, an initial soil pH increase of 0.4 units had reduced to 0.2 units after the second crop. The first crop yield was higher than the second crop yield. Long-term field trials are needed to examine residual lime effects.
Hand-held hoses and watering cans are widely used by smallholder farmers to irrigate vegetables in Cambodia and Laos. Overwatering is common. Technology change (e.g., low-pressure drip irrigation) has been used to improve irrigation efficiency but can be unaffordable for many smallholder farmers. The purpose of this study was to identify an appropriate method of predicting crop water demand, develop and field-test improved irrigation schedules for smallholder leafy vegetable farming based on that method, and then develop extension tools to communicate the schedules to smallholder farmers. Improved irrigation schedules for leafy vegetables were developed based on a crop water use prediction technique that is well established (the Penman–Monteith method) but beyond the capacity of smallholder farmers to implement without access to simple aids. Compared to conventional practice, the method approximately halved water and labour use and improved irrigation water productivity 2–3 fold in field research and demonstration trials. Simplified extension tools to assist smallholder farmers with practice change were developed. This work showed that significant efficiencies could be gained through improved irrigation scheduling without changing application technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.