Background Breast cancer is the most prevalent cancer among women. In triple-negative breast cancer (TNBC) cells, a novel quinone derivative, coenzyme Q 0 (CoQ 0 ), promotes apoptosis and cell-cycle arrest. This study explored the anti-epithelial–mesenchymal transition (EMT) and antimetastatic attributes of CoQ 0 in TNBC (MDA-MB-231). Methods Invasion, as well as MTT assays were conducted. Lipofectamine RNAiMAX was used to transfect cells with β-catenin siRNA. Through Western blotting and RT-PCR, the major signaling pathways’ protein expressions were examined, and the biopsied tumor tissues underwent immunohistochemical and hematoxylin and eosin staining as well as Western blotting. Results CoQ 0 (0.5–2 μM) hindered tumor migration, invasion, and progression. Additionally, it caused MMP-2/− 9, uPA, uPAR, and VEGF downregulation. Furthermore, in highly metastatic MDA-MB-231 cells, TIMP-1/2 expression was subsequently upregulated and MMP-9 expression was downregulated. In addition, CoQ 0 inhibited metastasis and EMT in TGF-β/TNF-α-stimulated non-tumorigenic MCF-10A cells. Bioluminescence imaging of MDA-MB-231 luciferase–injected live mice demonstrated that CoQ 0 significantly inhibited metastasis of the breast cancer to the lungs and inhibited the development of tumors in MDA-MB-231 xenografted nude mice. Silencing of β-catenin with siRNA stimulated CoQ 0 -inhibited EMT. Western blotting as well as histological analysis established that CoQ0 reduced xenografted tumor development because apoptosis induction, cell-cycle inhibition, E-cadherin upregulation, β-catenin downregulation, and metastasis and EMT regulatory protein modulation were observed. Conclusions CoQ 0 inhibited the progression of metastasis as well as EMT (in vitro and in vivo). The described approach has potential in treating human breast cancer metastasis. Electronic supplementary material The online version of this article (10.1186/s13046-019-1196-x) contains supplementary material, which is available to authorized users.
Neurodegenerative diseases are normally distinguished as disorders with loss of neurons. Various compounds are being tested to treat neurodegenerative diseases (NDs) but they possess solitary symptomatic advantages with numerous side effects. Accumulative studies have been conducted to validate the benefit of phytochemicals to treat neurodegenerative diseases including Alzheimer’s disease (AD) and Parkinson’s disease (PD). In this present review we explored the potential efficacy of phytochemicals such as epigallocatechin-3-galate, berberin, curcumin, resveratrol, quercetin and limonoids against the most common NDs, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). The beneficial potentials of these phytochemicals have been demonstrated by evidence-based but more extensive investigation needs to be conducted for reducing the progression of AD and PD.
Flavokawain B (FKB), a naturally occurring chalcone in kava extracts, has been reported to possess anticancer activity. However, the effect of FKB on gastric cancer remains unclear. We examined the in vitro and in vivo anticancer activity and autophagy involvement of FKB and determined the underlying molecular mechanisms. FKB is potently cytotoxic to human gastric cancer cells (AGS/NCI-N87/KATO-III/TSGH9201) and mildly toxic towards normal (Hs738) cells and primary mouse hepatocytes. FKB-induced AGS cell death was characterized by autophagy, not apoptosis, as evidenced by increased LC3-II accumulation, GFP-LC3 puncta and acidic vesicular organelles (AVOs) formation, without resulting procaspase-3/PARP cleavage. FKB further caused p62/SQSTM1 activation, mTOR downregulation, ATG4B inhibition, and Beclin-1/Bcl-2 dysregulation. Silencing autophagy inhibitors CQ/3-MA and LC3 (shRNA) significantly reversed the FKB-induced cell death of AGS cells. FKB-triggered ROS generation and ROS inhibition by NAC pre-treatment diminished FKB-induced cell death, LC3 conversion, AVO formation, p62/SQSTM1 activation, ATG4B inhibition and Beclin-1/Bcl-2 dysregulation, which indicated ROS-mediated autophagy in AGS cells. Furthermore, FKB induces G/M arrest and alters cell-cycle proteins through ROS-JNK signaling. Interestingly, FKB-induced autophagy is associated with the suppression of HER-2 and PIK/AKT/mTOR signaling cascades. FKB inhibits apoptotic Bax expression, and Bax-transfected AGS cells exhibit both apoptosis and autophagy; thus, FKB-inactivated Bax results in apoptosis inhibition. In vivo data demonstrated that FKB effectively inhibited tumor growth, prolonged the survival rate, and induced autophagy in AGS-xenografted mice. Notably, silencing of LC3 attenuated FKB-induced autophagy in AGS-xenografted tumors. FKB may be a potential chemopreventive agent in the activation of ROS-mediated autophagy of gastric cancer cells.
Focal adhesion kinase (FAK) is a non-receptor protein tyrosine that is overexpressed in many types of tumors and plays a pivotal role in multiple cell signaling pathways involved in cell survival, migration, and proliferation. This study attempts to determine the effect of synthesized antroquinonol on the modulation of FAK signaling pathways and explore their underlying mechanisms. Antroquinonol significantly inhibits cell viability with an MTT assay in both N18 neuroblastoma and C6 glioma cell lines, which exhibits sub G1 phase cell cycle, and further induction of apoptosis is confirmed by a TUNEL assay. Antroquinonol decreases anti-apoptotic proteins, whereas it increases p53 and pro-apoptotic proteins. Alterations of cell morphology are observed after treatment by atomic force microscopy. Molecular docking results reveal that antroquinonol has an H-bond with the Arg 86 residue of FAK. The protein levels of Src, pSrc, FAK, pFAK, Rac1, and cdc42 are decreased after antroquinonol treatment. Additionally, antroquinonol also regulates the expression of epithelial to mesenchymal transition (EMT) proteins. Furthermore, antroquinonol suppresses the C6 glioma growth in xenograft studies. Together, these results suggest that antroquinonol is a potential anti-tumorigenesis and anti-metastasis inhibitor of FAK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.