In living organisms, proteins are considered as the executants of biological functions. Owing to its pivotal role played in protein folding patterns, comprehension of protein structure is a challenging issue. Moreover, owing to numerous protein sequence exploration in protein data banks and complication of protein structures, experimental methods are found to be inadequate for protein structural class prediction. Hence, it is very much advantageous to design a reliable computational method to predict protein structural classes from protein sequences. In the recent few years there has been an elevated interest in using deep learning to assist protein structure prediction as protein structure prediction models can be utilized to screen a large number of novel sequences. In this regard, we propose a model employing Energy Profile for atom pairs in conjunction with the Legion-Class Bayes function called Energy Profile Legion-Class Bayes Protein Structure Identification model. Followed by this, we use a Thompson Optimized convolutional neural network to extract features between amino acids and then the Thompson Optimized SoftMax function is employed to extract associations between protein sequences for predicting secondary protein structure. The proposed Energy Profile Bayes and Thompson Optimized Convolutional Neural Network (EPB-OCNN) method tested distinct unique protein data and was compared to the state-of-the-art methods, the Template-Based Modeling, Protein Design using Deep Graph Neural Networks, a deep learning-based S-glutathionylation sites prediction tool called a Computational Framework, the Deep Learning and a distance-based protein structure prediction using deep learning. The results obtained when applied with the Biopython tool with respect to protein structure prediction time, protein structure prediction accuracy, specificity, recall, F-measure, and precision, respectively, are measured. The proposed EPB-OCNN method outperformed the state-of-the-art methods, thereby corroborating the objective.
Predicting three-dimensional structure of a protein in the field of computational molecular biology has received greater attention. Most of the recent research works aimed at exploring search space, however with the increasing nature and size of data, protein structure identification and prediction are still in the preliminary stage. This work is aimed at exploring search space to tackle protein structure prediction with minimum execution time and maximum accuracy by means of quantile regressive dragonfly and structural class homolog-based deep learning (QRD-SCHDL). The proposed QRD-SCHDL method consists of two distinct steps. They are protein structure identification and prediction. In the first step, protein structure identification is performed by means of QRD optimization model to identify protein structure with minimum error. Here the protein structure identification is first performed as the raw database contains sequence information and does not contain structural information. An optimization model is designed to obtain the structural information from the database. However, protein structure gives much more insight than its sequence. Therefore, to perform computational prediction of protein structure from its sequence, actual protein structure prediction is made. The second step involves the actual protein structure prediction via structural class and homolog-based deep learning. For each protein structure prediction, a scoring matrix is obtained by utilizing structural class maximum correlation coefficient. Finally, the proposed method is tested on a set of different unique numbers of protein data and compared to the state-of-the-art methods. The obtained results showed the potentiality of the proposed method in terms of metrics, error rate, protein structure prediction time, protein structure prediction accuracy, precision, specificity, recall, ROC, Kappa coefficient and [Formula: see text]-measure, respectively. It also shows that the proposed QRD-SCHDL method attains comparable results and outperformed in certain cases, thereby signifying the efficiency of the proposed work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.