The RNA helicases p68 and p72 are highly related members of the DEAD box family of proteins, sharing 90% identity across the conserved core, and have been shown to be involved in both transcription and mRNA processing. We previously showed that these proteins co-localise in the nucleus of interphase cells. In this study we show that p68 and p72 can interact with each other and self-associate in the yeast two-hybrid system. Co-immunoprecipitation experiments confirmed that p68 and p72 can interact in the cell and indicated that these proteins preferentially exist as hetero-dimers. In addition, we show that p68 can interact with NFAR-2, a protein that is also thought to function in mRNA processing. Moreover, gel filtration analysis suggests that p68 and p72 can exist in a variety of complexes in the cell (ranging from approximately 150 to approximately 400 kDa in size), with a subset of p68 molecules being in very large complexes (>2 MDa). The potential to exist in different complexes that may contain p68 and/or p72, together with a range of other factors, would provide the potential for these proteins to interact with different RNA substrates and would be consistent with recent reports implying a wide range of functions for p68/p72.
Respiratory epithelium is the target of therapies, such as gene therapy, for cystic fibrosis (CF) lung disease. To determine the usefulness of the nasal epithelium as a pre-screen for lung-directed therapies, we profiled gene expression in CF and non-CF nasal and bronchial epithelium samples using Illumina HumanRef-8 Expression BeadChips. 863 genes were differentially expressed between CF and non-CF bronchial epithelium but only 15 were differentially expressed between CF and non-CF nasal epithelium (≥1.5-fold, P≤0.05). The most enriched pathway in CF bronchial epithelium was inflammatory response, whereas in CF nasal epithelium it was amino acid metabolism. We also compared nasal and bronchial epithelium in each group and identified differential expression of cellular movement genes in CF patients and cellular growth genes in non-CF subjects. We conclude that CF and non-CF nasal and bronchial epithelium are transcriptionally distinct and CF nasal epithelium is not a good surrogate for the lung respiratory epithelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.