Reactive oxygen species generate many lesions in DNA, including R and S diastereomers of 8,5′-cyclo-2′-deoxyadenosine (cdA) and 8,5′-cyclo-2′-deoxyguanosine (cdG). Herein, the result of replication of a plasmid containing S-cdA in Escherichia coli is reported. S-cdA was found mutagenic and highly genotoxic. Viability and mutagenicity of the S-cdA construct were dependent on functional pol V, but mutational frequencies (MFs) and types varied in pol II-and pol IV-deficient strains relative to the wild-type strain. Both S-cdA → T and S-cdA → G substitutions occurred in equal frequency in wild-type E. coli, but the frequency of S-cdA → G dropped in pol IV-deficient strain, especially when being SOS induced. This suggests that pol IV plays a role in S-cdA → G mutations. MF increased significantly in pol II-deficient strain, suggesting pol II's likely role in error-free translesion synthesis. Primer extension and steady-state kinetic studies using pol IV, exo-free Klenow fragment (KF (exo−)), and Dpo4 were performed to further assess the replication efficiency and fidelity of S-cdA and S-cdG. Primer extension by pol IV mostly stopped before the lesion, although a small fraction was extended opposite the lesion. Kinetic studies showed that pol IV incorporated dCMP almost as efficiently as dTMP opposite S-cdA, whereas it incorporated the correct nucleotide dCMP opposite S-cdG 10-fold more efficiently than any other dNMP. Further extension of each lesion containing pair, however, was very inefficient. These results are consistent with the role of pol IV in S-cdA → G mutations in E. coli. KF (exo−) was also strongly blocked by both lesions, but it could slowly incorporate the correct nucleotide opposite them. In contrast, Dpo4 could extend a small fraction of the primer to a full-length product on both S-cdG and S-cdA templates. Dpo4 incorporated dTMP preferentially opposite S-cdA over the other dNMPs, but the discrimination was only 2- to 8-fold more proficient. Further extension of the S-cdA:T and S-cdA:C pair was not much different. For S-cdG, conversely, the wrong nucleotide, dTMP, was incorporated more efficiently than dCMP, although one-base extension of the S-cdG:T pair was less efficient than the S-cdG:C pair. S-cdG, therefore, has the propensity to cause G → A transition, as was reported to occur in E. coli. The results of this study are consistent with the strong replication blocking nature of S-cdA and S-cdG, and their ability to initiate error-prone synthesis by Y-family DNA polymerases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.