Atmospheric carbon dioxide enrichment (eCO 2) can enhance plant carbon uptake and growth 1,2,3,4,5 , thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO 2 concentration 6. While evidence gathered from young aggrading forests has generally indicated a strong CO 2 fertilization effect on biomass growth 3,4,5 , it is unclear whether mature forests respond to eCO 2 in a similar way. In mature trees and forest stands 7,8,9,10 , photosynthetic uptake has been found to increase under eCO 2 without any apparent accompanying growth response, leaving an open question about the fate of additional carbon fixed under eCO 2 4,5,7,8,9,10,11. Here, using data from the first ecosystemscale Free-Air CO 2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responds to four years of eCO 2 exposure. We show that, although the eCO 2 treatment of ambient +150 ppm (+38%) induced a 12% (+247 g C m-2 yr-1) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for ~50% of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO 2 , and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO 2 fertilization as a driver of increased carbon sinks in global forests. Main text Globally, forests act as a large carbon sink, absorbing a significant portion of the anthropogenic CO 2 emissions 1,12 , an ecosystem service that has tremendous social and
Summary Mesophyll conductance (gm) is the diffusion of CO2 from intercellular air spaces (IAS) to the first site of carboxylation in the mesophyll cells. In C3 species, gm is influenced by diverse leaf structural and anatomical traits; however, little is known about traits affecting gm in C4 species. To address this knowledge gap, we used online oxygen isotope discrimination measurements to estimate gm and microscopy techniques to measure leaf structural and anatomical traits potentially related to gm in 18 C4 grasses. In this study, gm scaled positively with photosynthesis and intrinsic water‐use efficiency (TEi), but not with stomatal conductance. Also, gm was not determined by a single trait but was positively correlated with adaxial stomatal densities (SDada), stomatal ratio (SR), mesophyll surface area exposed to IAS (Smes) and leaf thickness. However, gm was not related to abaxial stomatal densities (SDaba) and mesophyll cell wall thickness (TCW). Our study suggests that greater SDada and SR increased gm by increasing Smes and creating additional parallel pathways for CO2 diffusion inside mesophyll cells. Thus, SDada, SR and Smes are important determinants of C4‐gm and could be the target traits selected or modified for achieving greater gm and TEi in C4 species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.