Advanced Driver Assistance systems (ADAS) have seen increasing popularity due to their importance in automotive driver safety and autonomous driving. These systems analyze data from several sensors mounted on the vehicle to detect lanes, obstacles and traffic conditions to ensure safe driving. Lane markings on road with different color and structure provide information on safe drive zone and other traffic restrictions on road. Typical ADAS solutions depend on vision based sensors for lane detection.Here we propose an efficient algorithm for detecting type and color of the lane marks as this information plays critical role in taking the decision for safety features such as lane change and lane keep assist. Our algorithm is pluggable to any state-of-art lane detection algorithm and provides lane type and color for straight, curvy roads. The proposed method is tested on various challenging scenarios and results are promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.