COVID-19 is an infectious disease, growth of which depends upon the linked stages of the epidemic, the average number of people one person can infect and the time it takes for those people to become infectious themselves. We have studied the COVID-19 time series to understand the growth behaviour of COVID-19 cases series. A structural break occurs in the COVID-19 series at the change time form one stage to another. We have performed the structural break analysis of data available for 207 countries till April 20, 2020. There are 42 countries which have recorded five breaks in COVID cases series. This means that these countries are in the sixth stage of growth transmission and show a downward pattern in reporting in the daily cases, whereas countries with two and three breaks, record the rapid growth pattern in the daily cases. From this study, we conclude that the more the breaks in the series, there is more possibility to determine the constant or decreasing rate of daily cases. It is well fitted using lognormal distribution as this distribution is archived at its highest peak after some period and then suddenly it decreases at a longer time period. This can be seen in various countries like China, Australia, New Zealand and so on.
A vast majority of the countries is under the economic and health crises due to the current epidemic of coronavirus disease 2019 (COVID-19). The present study analyzes the COVID-19 using time series, which is an essential gizmo for knowing the enlargement of infection and its changing behavior, especially the trending model. We have considered an autoregressive model with a non-linear time trend component that approximately converted into the linear trend using the spline function. The spline function split the COVID-19 series into different piecewise segments between respective knots and fitted the linear time trend. First, we obtain the number of knots with its locations in the COVID-19 series and then the estimation of the best-fitted model parameters are determined under Bayesian setup. The results advocate that the proposed model/methodology is a useful procedure to convert the non-linear time trend into a linear pattern of newly coronavirus case for various countries in the pandemic situation of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.