Vascular lesions of the head and neck region in children constitute an interesting group of lesions that benefit immensely from imaging techniques. Imaging is essential for identification, characterization, and delineation of the extent of lesion and subsequent follow-up. Infantile hemangiomas, which are vascular tumors with a specific evolution pattern, constitute a large majority of these lesions. On the other hand, there are vascular malformations, which are anomalies of the vascular system, consisting of a range of vascular tissues associated with various flow patterns. When diagnosis is clinically evident, imaging should utilize non-radiation techniques and address the issues necessary for management. Timing and interpretation of imaging methods employed in assessing childhood vascular lesion should also take into consideration the natural history so that imaging is performed to address a specific question. This review highlights the typical appearance of a hemangioma and a group of vascular malformations of the head and neck. For descriptive purpose, an attempt has been made to group lesions into specific subsites, with each one having specific clinical significance. Cases included illustrate the spectrum of the disease ranging from classical form in young children to slightly differing manifestations of the disease in adolescents and adults. The illustrations also provide a novel way of presenting image data using volume-rendering techniques of 3D data. Multi-modality team interaction and management strategies of these complex lesions are also emphasized.
Neurosonography is a simple, established non-invasive technique for the intracranial assessment of preterm neonate. Apart from established indication in the evaluation of periventricular haemorrhage, it provides clue to wide range of pathology. This presentation provides a quick roadmap to the technique, imaging anatomy and spectrum of pathological imaging appearances encountered in neonates.
Pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) is correlated with better outcomes for breast cancer, especially for triple negative breast cancer (TNBC). We developed RNA expression classifiers from a model of breast epithelial cell organization to predict which patients will achieve pCR to NAC, and which will have residual disease (RD). An exclusive collection of retrospective formalin-fixed, paraffin-embedded (FFPE) pretreatment biopsies from 222 multi-institutional breast cancer patients treated with NAC, including 90 TNBC patients, were processed using standard procedures. A novel strategy using machine learning algorithms and statistical cross-validation were used to develop predictive classifiers based on AmpliSeq differential gene expression analysis of patient samples. Two RNA expression classifiers of 18 genes and 15 genes applied sequentially to the total cohort, classified patients into three distinct classes which accurately identified 83.75% of pCR and 86.62% of RD patients in the total population, and 92.10% of pCR and 80.77% of RD patients in the TNBC subset. This new approach identified a subset of TNBC patients predicted to have RD showing significantly higher levels of Ki-67 expression and having significantly poorer survival rates than the other TNBC patients. Stratification of patients may allow identification of TNBC patients with the worst prognosis prior to NAC, allowing for personalized treatments with the potential to improve patient outcomes.
Vascular malformations, in particular venous malformations (VM), are common lesions involving the pediatric and adolescent population. VM occur at approximately 1:5,000 to 10,000; approximately 40% of them occur in the head and neck regions. Classical appearance of VM on imaging is a demonstration of near-normal?sized or mildly dilated feeding arteries which subsequently lead to dilated venous structures of varying caliber, thus constituting the malformation. Phleboliths are the hallmark of VM. Plain radiography has been an established modality for demonstrating phleboliths. The emergence of computed tomographic (CT) as a preferred imaging modality for the evaluation of a complex vascular malformation necessitates familiarity with the spectrum of CT appearances of this lesion. This presentation illustrates an additional CT sign, ?shining pearls sign,? highlighting the striking display of phleboliths in the vascular malformations, prompting correct diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.