Glial fibrillary acidic protein (GFAP) is as an intermediate filament protein expressed by certain cells in the central nervous system (CNS). GFAP has been recognized as a reliable biomarker of CNS injury. However, due to the absence of rapid and easy-to-use assays for the detection of CNS injury biomarkers, measuring GFAP levels to identify CNS injury has not attained widespread clinical implementation. In the present work, we developed a polyethylenimine (PEI) coated graphene screen-printed electrode and used it for highly sensitive immunosensing of GFAP. Covalent binding of GFAP antibody to the PEI-modified electrode surface along with electrochemical impedance spectroscopy was used for detecting the change in the electrical conductivity of the electrodes. A highly linear response was recorded for various GFAP concentrations. Quantitative, selective, and label-free detection was achieved in the dynamic range of 1 pg mL to 100 ng mL for GFAP spiked in phosphate buffer saline, artificial cerebrospinal fluid, and human blood serum. The performance of the immunosensor was further validated and correlated by testing samples with the commercially available enzyme-linked immunosorbent assay method. This functionalized electrode could be used clinically for rapid detection and monitoring of CNS injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.