Many existing deep learning models for natural language processing tasks focus on learning the compositionality of their inputs, which requires many expensive computations. We present a simple deep neural network that competes with and, in some cases, outperforms such models on sentiment analysis and factoid question answering tasks while taking only a fraction of the training time. While our model is syntactically-ignorant, we show significant improvements over previous bag-of-words models by deepening our network and applying a novel variant of dropout. Moreover, our model performs better than syntactic models on datasets with high syntactic variance. We show that our model makes similar errors to syntactically-aware models, indicating that for the tasks we consider, nonlinearly transforming the input is more important than tailoring a network to incorporate word order and syntax.
We propose D-RISE, a method for generating visual explanations for the predictions of object detectors. D-RISE can be considered "black-box" in the software testing sense, it only needs access to the inputs and outputs of an object detector. Compared to gradient-based methods, D-RISE is more general and agnostic to the particular type of object detector being tested as it does not need to know about the inner workings of the model. We show that D-RISE can be easily applied to different object detectors including one-stage detectors such as YOLOv3 and two-stage detectors such as Faster-RCNN. We present a detailed analysis of the generated visual explanations to highlight the utilization of context and the possible biases learned by object detectors.
Visual narrative is often a combination of explicit information and judicious omissions, relying on the viewer to supply missing details. In comics, most movements in time and space are hidden in the "gutters" between panels. To follow the story, readers logically connect panels together by inferring unseen actions through a process called "closure". While computers can now describe what is explicitly depicted in natural images, in this paper we examine whether they can understand the closure-driven narratives conveyed by stylized artwork and dialogue in comic book panels. We construct a dataset, COMICS, that consists of over 1.2 million panels (120 GB) paired with automatic textbox transcriptions. An in-depth analysis of COMICS demonstrates that neither text nor image alone can tell a comic book story, so a computer must understand both modalities to keep up with the plot. We introduce three cloze-style tasks that ask models to predict narrative and character-centric aspects of a panel given n preceding panels as context. Various deep neural architectures underperform human baselines on these tasks, suggesting that COMICS contains fundamental challenges for both vision and language.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.