We introduce here an incremental version of slow feature analysis (IncSFA), combining candid covariance-free incremental principal components analysis (CCIPCA) and covariance-free incremental minor components analysis (CIMCA). IncSFA's feature updating complexity is linear with respect to the input dimensionality, while batch SFA's (BSFA) updating complexity is cubic. IncSFA does not need to store, or even compute, any covariance matrices. The drawback to IncSFA is data efficiency: it does not use each data point as effectively as BSFA. But IncSFA allows SFA to be tractably applied, with just a few parameters, directly on high-dimensional input streams (e.g., visual input of an autonomous agent), while BSFA has to resort to hierarchical receptive-field-based architectures when the input dimension is too high. Further, IncSFA's updates have simple Hebbian and anti-Hebbian forms, extending the biological plausibility of SFA. Experimental results show IncSFA learns the same set of features as BSFA and can handle a few cases where BSFA fails.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.