The APOE 4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). ApoE protein aggregation plays a central role in AD pathology, including the accumulation of -amyloid (A). Lipid-poor ApoE4 protein is prone to aggregate and lipidating ApoE4 protects it from aggregation. The mechanisms regulating ApoE4 aggregation in vivo are surprisingly not known. ApoE lipidation is controlled by the activity of the ATP binding cassette A1 (ABCA1). ABCA1 recycling and degradation is regulated by ADP-ribosylation factor 6 (ARF6). We found that ApoE4 promoted greater expression of ARF6 compared with ApoE3, trapping ABCA1 in late-endosomes and impairing its recycling to the cell membrane. This was associated with lower ABCA1-mediated cholesterol efflux activity, a greater percentage of lipid-free ApoE particles, and lower A degradation capacity. Human CSF from APOE 4/4 carriers showed a lower ability to induce ABCA1-mediated cholesterol efflux activity and greater percentage of aggregated ApoE protein compared with CSF from APOE 3/3 carriers. Enhancing ABCA1 activity rescued impaired A degradation in ApoE4-treated cells and reduced both ApoE and ABCA1 aggregation in the hippocampus of male ApoE4-targeted replacement mice. Together, our data demonstrate that aggregated and lipidpoor ApoE4 increases ABCA1 aggregation and decreases ABCA1 cell membrane recycling. Enhancing ABCA1 activity to reduce ApoE and ABCA1 aggregation is a potential therapeutic strategy for the prevention of ApoE4 aggregation-driven pathology.
The methyl-CpG Binding Protein 2 (MeCP2) is a widely expressed protein, mutations of which cause Rett syndrome. The level of MeCP2 is highest in the brain where it is expressed selectively in mature neurons. Its functions in postmitotic neurons are not known. The MeCP2 gene is alternatively-spliced to generate two proteins with different N-termini, designated as MeCP2-e1 and MeCP2-e2. The physiological significance of these two isoforms has not been elucidated and it is generally assumed they are functionally equivalent. We report that in cultured cerebellar granule neurons induced to die by low potassium treatment and in Aβ-treated cortical neurons, Mecp2-e2 expression is upregulated whereas expression of the Mecp2-e1 isoform is downregulated. Knockdown of Mecp2-e2 protects neurons from death whereas knockdown of the e1 isoform has no effect. Forced expression of MeCP2-e2, but not MeCP2-e1, promotes apoptosis in otherwise healthy neurons. We find that MeCP2-e2 interacts with the forkhead protein FoxG1, mutations of which also cause Rett syndrome. FoxG1 has been shown to promote neuronal survival and its downregulation leads to neuronal death. We find that elevated FoxG1 expression inhibits MeCP2-e2 neurotoxicity. MeCP2-e2 neurotoxicity is also inhibited by IGF-1, which prevents the neuronal death-associated downregulation of FoxG1 expression, and by Akt, activation of which is necessary for FoxG1-mediated neuroprotection. Finally, MeCP2-e2 neurotoxicity is enhanced if FoxG1 expression is suppressed or in neurons cultured from FoxG1-haplodeficient mice. Our results indicate that Mecp2-e2 promotes neuronal death and that this activity is normally inhibited by FoxG1. Reduced FoxG1expression frees Mecp2-e2 to promote neuronal death.
Huntington's disease (HD) is caused by a polyglutamine expansion within the huntingtin (Htt) protein. Both loss of function of normalHtt and gain of a toxic function by the polyglutamine-expanded mutant Htt protein have been proposed to be responsible for HD, although the molecular mechanisms involved are unclear. We show that Htt is a neuroprotective protein in both HD-related and unrelated model systems. Neuroprotection by Htt is mediated by its sequestration of histone deacetylase-3 (HDAC3), a protein known to promote neuronal death. In contrast to the normal Htt, mutant Htt interacts poorly with HDAC3. However, expression of mutant Htt liberates HDAC3 from Htt, thus de-repressing its neurotoxic activity. Indeed, mutant Htt neurotoxicity is inhibited by the knockdown of HDAC3 and markedly reduced in HDAC3-deficient neurons. A reduction in Htt-HDAC3 interaction is also seen in neurons exposed to other apoptotic stimuli and in the striatum of R6/2 HD mice. Our results suggest that the robust interaction between Htt and HDAC3 along with the ability of mutant Htt to disrupt this association while not itself interacting with HDAC3 provides an explanation for both the loss-of-function and gain-of-toxic-function mechanisms proposed for HD. Moreover, our results identify HDAC3 as an essential player in mutant Htt-induced neurodegeneration.
BackgroundApolipoprotein E (APOE) ɛ4 and low cerebrospinal fluid (CSF) amyloid-β42 (Aβ42) levels are predictors for developing Alzheimer’s disease (AD). The results of several studies indicate an interaction between docosahexaenoic acid (DHA) consumption and cognitive outcomes by APOE genotype. Our objective in the present study was to examine whether APOE ɛ4 genotype and low CSF Aβ42 levels were associated with reduced delivery of DHA to CSF in the Alzheimer’s Disease Cooperative Study-sponsored DHA clinical trial.MethodsPhospholipid DHA was assayed in the plasma of 384 participants and CSF of 70 participants at baseline. Forty-four of the 70 participants completed the 18-month follow-up visit after allocation to placebo (n = 15) or DHA (n = 29). Plasma and CSF DHA levels, CSF Aβ42, Tau, and phosphorylated Tau were measured at baseline and after the 18-month intervention. Participants were divided into tertiles based on baseline Aβ42 CSF levels. To assess DHA delivery across the blood-brain barrier, the ratio of CSF to plasma DHA levels was calculated.ResultsAt baseline, there were no significant differences between CSF or plasma phospholipid DHA levels by CSF Aβ42 tertiles or ɛ4 status. After 18 months of DHA supplementation, participants at the lowest Aβ42 tertile had significantly lower CSF DHA levels (p = 0.01) and lower CSF-to-plasma DHA ratios (p = 0.05) compared to the other tertiles. Baseline CSF Aβ42 levels were significantly lower in ɛ4 carriers than in ɛ4 noncarriers (p = 0.01). Participants carrying the ɛ4 allele (n = 25) demonstrated a less pronounced increase in CSF DHA level compared with noncarriers (n = 4), with a possible interaction effect between treatment and APOE genotype (p = 0.07).ConclusionsAPOE ɛ4 allele and lower CSF Aβ42 levels were associated with less transport of DHA to CSF. Brain amyloid pathology may limit the delivery of DHA to the brain in AD.Trial RegistrationClinicaltrials.gov identifier: NCT00440050. Registered on 22 Feb 2007.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.