IMPORTANCEIn multiple sclerosis (MS), chronic active lesions, which previously could only be detected at autopsy, can now be identified on susceptibility-based magnetic resonance imaging (MRI) in vivo as non-gadolinium-enhancing lesions with paramagnetic rims. Pathologically, they feature smoldering inflammatory demyelination at the edge, remyelination failure, and axonal degeneration. To our knowledge, the prospect of long-term in vivo monitoring makes it possible for the first time to determine their contribution to disability and value as a treatment target.OBJECTIVE To assess whether rim lesions are associated with patient disability and long-term lesion outcomes. DESIGN, SETTING, PARTICIPANTS We performed 3 studies at the National Institutes of Health Clinical Center: (1) a prospective clinical/radiological cohort of 209 patients with MS (diagnosis according to the 2010 McDonald revised MS criteria, age Ն18 years, with 7-T or 3-T susceptibility-based brain MRI results) who were enrolled from January 2012 to March 2018 (of 209, 17 patients [8%] were excluded because of uninterpretable MRI scans); (2) a radiological/pathological analysis of expanding lesions featuring rims; and (3) a retrospective longitudinal radiological study assessing long-term lesion evolution in 23 patients with MS with yearly MRI scans for 10 years or more (earliest scan, 1992). MAIN OUTCOMES AND MEASURES(1) Identification of chronic rim lesions on 7-T or 3-T susceptibility-based brain MRI in 192 patients with MS and the association of rim counts with clinical disability (primary analysis) and brain volume changes (exploratory analysis). (2) Pathological characterization of 10 expanding lesions from an adult with progressive MS who came to autopsy after 7 years of receiving serial in vivo MRI scans. (3) Evaluation of annual lesion volume change (primary analysis) and T1 times (exploratory analysis) in 27 rim lesions vs 27 rimless lesions. RESULTSOf 209 participants, 104 (50%) were women and 32 (15%) were African American. One hundred seventeen patients (56%) had at least 1 rim lesion regardless of prior or ongoing treatment. Further, 84 patients (40%) had no rims (mean [SD] age, 47 [14] years), 66 (32%) had 1 to 3 rims (mean [SD] age, 47 [11] years), and 42 (20%) had 4 rims or more (mean [SD] age, 44 [11] years). Individuals with 4 rim lesions or more reached motor and cognitive disability at an earlier age. Normalized volumes of brain, white matter, and basal ganglia were lower in those with rim lesions. Whereas rimless lesions shrank over time (−3.6%/year), rim lesions were stable in size or expanded (2.2%/year; P < .001). Rim lesions had longer T1 times, suggesting more tissue destruction, than rimless lesions. On histopathological analysis, all 10 rim lesions that expanded in vivo had chronic active inflammation.CONCLUSIONS AND RELEVANCE Chronic active lesions are common, are associated with more aggressive disease, exert ongoing tissue damage, and occur even in individuals treated with effective disease-modifying therapies. These r...
† People involved in the organization of the challenge. ‡ People contributing data from their institutions.§ Equal senior authors.
Compared with DIR, using PSIR the authors are able to detect a significantly greater number of cortical grey matter lesions. The presence of at least one IC lesion in every MS patient, but very few healthy controls, suggests that it may be a useful adjunct to conventional MRI when a diagnosis of MS is suspected but not confirmed.
In multiple sclerosis, there is increasing evidence that demyelination, and neuronal damage occurs preferentially in cortical grey matter next to the outer surface of the brain. It has been suggested that this may be due to the effects of pathology outside the brain parenchyma, in particular meningeal inflammation or through cerebrospinal fluid mediated factors. White matter lesions are often located adjacent to the ventricles of the brain, suggesting the possibility of a similar outside-in pathogenesis, but an investigation of the relationship of periventricular normal-appearing white matter abnormalities with distance from the ventricles has not previously been undertaken. The present study investigates this relationship in vivo using quantitative magnetic resonance imaging and compares the abnormalities between secondary progressive and relapsing remitting multiple sclerosis. Forty-three patients with relapsing remitting and 28 with secondary progressive multiple sclerosis, and 38 healthy control subjects were included in this study. T1-weighted volumetric, magnetization transfer and proton density/T2-weighted scans were acquired for all subjects. From the magnetization transfer data, magnetization transfer ratio maps were prepared. White matter tissue masks were derived from SPM8 segmentations of the T1-weighted images. Normal-appearing white matter masks were generated by subtracting white matter lesions identified on the proton density/T2 scan, and a two-voxel perilesional ring, from the SPM8 derived white matter masks. White matter was divided in concentric bands, each ∼1-mm thick, radiating from the ventricles toward the cortex. The first periventricular band was excluded from analysis to mitigate partial volume effects, and normal-appearing white matter and lesion magnetization transfer ratio values were then computed for the 10 bands nearest to the ventricles. Compared with controls, magnetization transfer ratio in the normal-appearing white matter bands was significantly lower in patients with multiple sclerosis. In controls, magnetization transfer ratio was highest in the band adjacent to the ventricles and declined with increasing distance from the ventricles. In the multiple sclerosis groups, relative to controls, reductions in magnetization transfer ratio were greater in the secondary progressive multiple sclerosis compared with relapsing remitting multiple sclerosis group, and these reductions were greatest next to the ventricles and became smaller with distance from them. White matter lesion magnetization transfer ratio reductions were also more apparent adjacent to the ventricle and decreased with distance from the ventricles in both the relapsing remitting and secondary progressive multiple sclerosis groups. These findings suggest that in people with multiple sclerosis, and more so in secondary progressive than relapsing remitting multiple sclerosis, tissue structural abnormalities in normal-appearing white matter and white matter lesions are greatest near the ventricles. This would be consiste...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.