Severe low-renin hypertension has few known causes. Apparent mineralocorticoid excess (AME) is a genetic disorder that results in severe juvenile low-renin hypertension, hyporeninemia, hypoaldosteronemia, hypokalemic alkalosis, low birth weight, failure to thrive, poor growth, and in many cases nephrocalcinosis. In 1995, it was shown that mutations in the gene (HSD11B2) encoding the 11-hydroxysteroid dehydrogenase type 2 enzyme (11-HSD2) cause AME. Typical patients with AME have defective 11-HSD2 activity, as evidenced by an abnormal ratio of cortisol to cortisone metabolites and by an exceedingly diminished ability to convert [11-3 H]cortisol to cortisone. Recently, we have studied an unusual patient with mild low-renin hypertension and a homozygous mutation in the HSD11B2 gene. The patient came from an inbred Mennonite family, and though the mutation identified her as a patient with AME, she did not demonstrate the typical features of AME. Biochemical analysis in this patient revealed a moderately elevated cortisol to cortisone metabolite ratio. The conversion of cortisol to cortisone was 58% compared with 0-6% in typical patients with AME whereas the normal conversion is 90-95%. Molecular analysis of the HSD11B2 gene of this patient showed a homozygous C3T transition in the second nucleotide of codon 227, resulting in a substitution of proline with leucine (P227L). The parents and sibs were heterozygous for this mutation. In vitro expression studies showed an increase in the K m (300 nM) over normal (54 nM). Because Ϸ40% of patients with essential hypertension demonstrate low renin, we suggest that such patients should undergo genetic analysis of the HSD11B2 gene.
We searched expressed sequence tag databases with conserved domains of the short-chain alcohol dehydrogenase superfamily and identified another isoform of 17 beta-hydroxysteroid dehydrogenase, 17 beta HSDXI. This enzyme converts 5 alpha-androstane-3 alpha, 17 beta-diol to androsterone. The substrate has been implicated in supporting gestation and modulating gamma-aminobutyric acid receptor activity. 17 beta HSDXI is colinear with human retinal short-chain dehydrogenase/reductase retSDR2, a protein with no known biological activity (accession no. AAF06939). Of the proteins with known function, 17 beta HSDXI is most closely related to the retinol-metabolizing enzyme retSDR1, with which it has 30% identity. There is a polymorphic stretch of 15 adenosines in the 5' untranslated region of the cDNA sequence and a silent polymorphism at C719T. A 17 beta HSDXI construct with a stretch of 20 adenosines was found to produce significantly more enzyme activity than constructs containing 15 or less adenosines (43% vs. 26%, P < 0.005). The C719T polymorphism is present in 15% of genomic DNA samples. Northern blot analysis showed high levels of 17 beta HSDXI expression in the pancreas, kidney, liver, lung, adrenal, ovary, and heart. Immunohistochemical staining for 17 beta HSDXI is strong in steroidogenic cells such as syncytiotrophoblasts, sebaceous gland, Leydig cells, and granulosa cells of the dominant follicle and corpus luteum. In the adrenal 17 beta HSDXI, staining colocalized with the distribution of 17 alpha-hydroxylase but was stronger in the mid to outer cortex. 17 beta HSDXI was also found in the fetus and increased after birth. Liver parenchymal cells and epithelium of the endometrium and small intestine also stained. Regulation studies in mouse Y1 cells showed that cAMP down-regulates 17 beta HSDXI enzymatic activity (40% vs. 32%, P < 0.05) and reduces gene expression to undetectable levels. All-trans-retinoic acid did not affect 17 beta HSDXI expression or activity, but addition of the retinoid together with cAMP significantly decreased activity over cAMP alone (32% vs. 23%, P < 0.05). Cloning and sequencing of the 17 beta HSDXI promoter identified the potential nuclear receptor steroidogenic factor-1 half-site TCCAAGGCCGG, and a cluster of three other potential steroidogenic factor-1 half-sites were found in the distal part of intron 1. Collectively, these results suggest a role for 17 beta HSDXI in androgen metabolism during steroidogenesis and a possible role in nonsteroidogenic tissues including paracrine modulation of 5 alpha-androstane-3 alpha, 17 beta-diol levels. 17 beta HSDXI could act by metabolizing compounds that stimulate steroid synthesis and/or by generating metabolites that inhibit it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.