We performed a two-stage genome screen to search for novel risk factors for late-onset Alzheimer disease (AD). The first stage involved genotyping 292 affected sibling pairs using 237 markers spaced at approximately 20 cM intervals throughout the genome. In the second stage, we genotyped 451 affected sibling pairs (ASPs) with an additional 91 markers, in the 16 regions where the multipoint LOD score was greater than 1 in stage I. Ten regions maintained LOD scores in excess of 1 in stage II, on chromosomes 1 (peak B), 5, 6, 9 (peaks A and B), 10, 12, 19, 21, and X. Our strongest evidence for linkage was on chromosome 10, where we obtained a peak multipoint LOD score (MLS) of 3.9. The linked region on chromosome 10 spans approximately 44 cM from D10S1426 (59 cM) to D10S2327 (103 cM). To narrow this region, we tested for linkage disequilibrium with several of the stage II microsatellite markers. Of the seven markers we tested in family-based and case control samples, the only nominally positive association we found was with the 167 bp allele of marker D10S1217 (chi-square=7.11, P=0.045, df=1).
The apolipoprotein E (APOE) gene is the only genetic risk factor that has so far been linked to risk for late-onset Alzheimer's disease (LOAD). However, 50 percent of Alzheimer's disease cases do not carry an APOE4 allele, suggesting that other risk factors must exist. We performed a two-stage genome-wide screen in sibling pairs with LOAD to detect other susceptibility loci. Here we report evidence for an Alzheimer's disease locus on chromosome 10. Our stage one multipoint lod score (logarithm of the odds ratio for linkage/no linkage) of 2.48 (266 sibling pairs) increased to 3.83 in stage 2 (429 sibling pairs) close to D10S1225 (79 centimorgans). This locus modifies risk for Alzheimer's disease independent of APOE genotype.
4Specialist Children's Services, North West Wales NHS Trust, Bangor, UK Clock gene anomalies have been suggested as causative factors in autism. We screened eleven clock/clock-related genes in a predominantly high-functioning Autism Genetic Resource Exchange sample of strictly diagnosed autistic disorder progeny and their parents (110 trios) for association of clock gene variants with autistic disorder. We found significant association (P < 0.05) for two single-nucleotide polymorphisms in per1 and two in npas2. Analysis of all possible combinations of two-marker haplotypes for each gene showed that in npas2 40 out of the 136 possible two-marker combinations were significant at the P < 0.05 level, with the best result between markers rs1811399 and rs2117714, P = 0.001. Haplotype analysis within per1 gave a single significant result: a global P = 0.027 for the markers rs2253820-rs885747. No two-marker haplotype was significant in any of the other genes, despite the large number of tests performed. Our findings support the hypothesis that these epistatic clock genes may be involved in the etiology of autistic disorder. Problems in sleep, memory and timing are all characteristics of autistic disorder and aspects of sleep, memory and timing are each clock-gene-regulated in other species. We identify how our findings may be relevant to theories of autism that focus on the amygdala, cerebellum, memory and temporal deficits. We outline possible implications of these findings for developmental models of autism involving temporal synchrony/social timing.
We performed an affected sib-pair (ASP) linkage analysis to test for the effects of age at onset (AAO), rate of decline (ROD), and Apolipoprotein E (APOE) genotype on linkage to late-onset Alzheimer's disease (AD) in a sample comprising 428 sib-pairs. We observed linkage of mean AAO to chromosome 21 in the whole sample (max LOD = 2.57). This came entirely from the NIMH sample (max LOD = 3.62), and was strongest in pairs with high mean AAO (>80). A similar effect was observed on chromosome 2q in the NIMH sample (max LOD = 2.73); this region was not typed in the IADC/UK sample. Suggestive evidence was observed in the combined sample of linkage of AAO difference to chromosome 19q (max LOD = 2.33) in the vicinity of APOE and 12p (max LOD = 2.22), with linkage strongest in sib-pairs with similar AAO. Mean ROD showed suggestive evidence of linkage to chromosome 9q in the whole sample (max LOD = 2.29), with the effect strongest in the NIMH sample (max LOD = 3.58), and in pairs with high mean ROD. Additional suggestive evidence was also observed in the NIMH sample with AAO difference on chromosome 6p (max LOD = 2.44) and 15p (max LOD = 1.87), with linkage strongest in pairs with similar AAO, and in the UK sample with mean ROD on chromosome 1p (max LOD = 2.73, linkage strongest in pairs with high mean ROD). We also observed suggestive evidence of increased identical by descent (IBD) in APOE epsilon4 homozygotes on chromosome 1 (max LOD = 3.08) and chromosome 9 (max LOD = 3.34). The previously reported genome-wide linkage of AD to chromosome 10 was not influenced by any of the covariates studied.
Substantial familial influence on age of onset, depression and agitation suggests that genotype does influence phenotype in Alzheimer's disease. Establishing the molecular basis for this phenotypic variation may prove relevant to other neuropsychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.