Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI). The CAMI II challenge engaged the community to assess methods on realistic and complex datasets with long- and short-read sequences, created computationally from around 1,700 new and known genomes, as well as 600 new plasmids and viruses. Here we analyze 5,002 results by 76 program versions. Substantial improvements were seen in assembly, some due to long-read data. Related strains still were challenging for assembly and genome recovery through binning, as was assembly quality for the latter. Profilers markedly matured, with taxon profilers and binners excelling at higher bacterial ranks, but underperforming for viruses and Archaea. Clinical pathogen detection results revealed a need to improve reproducibility. Runtime and memory usage analyses identified efficient programs, including top performers with other metrics. The results identify challenges and guide researchers in selecting methods for analyses.
Developing new software tools for analysis of large-scale biological data is a key component of advancing modern biomedical research. Scientific reproduction of published findings requires running computational tools on data generated by such studies, yet little attention is presently allocated to the installability and archival stability of computational software tools. Scientific journals require data and code sharing, but none currently require authors to guarantee the continuing functionality of newly published tools. We have estimated the archival stability of computational biology software tools by performing an empirical analysis of the internet presence for 36,702 omics software resources published from 2005 to 2017. We found that almost 28% of all resources are currently not accessible through uniform resource locators (URLs) published in the paper they first appeared in. Among the 98 software tools selected for our installability test, 51% were deemed “easy to install,” and 28% of the tools failed to be installed at all because of problems in the implementation. Moreover, for papers introducing new software, we found that the number of citations significantly increased when authors provided an easy installation process. We propose for incorporation into journal policy several practical solutions for increasing the widespread installability and archival stability of published bioinformatics software.
Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the community-driven initiative for the Critical Assessment of Metagenome Interpretation (CAMI). In its second challenge, CAMI engaged the community to assess their methods on realistic and complex metagenomic datasets with long and short reads, created from ∼1,700 novel and known microbial genomes, as well as ∼600 novel plasmids and viruses. Altogether 5,002 results by 76 program versions were analyzed, representing a 22x increase in results.Substantial improvements were seen in metagenome assembly, some due to using long-read data. The presence of related strains still was challenging for assembly and genome binning, as was assembly quality for the latter. Taxon profilers demonstrated a marked maturation, with taxon profilers and binners excelling at higher bacterial taxonomic ranks, but underperforming for viruses and archaea. Assessment of clinical pathogen detection techniques revealed a need to improve reproducibility. Analysis of program runtimes and memory usage identified highly efficient programs, including some top performers with other metrics. The CAMI II results identify current challenges, but also guide researchers in selecting methods for specific analyses.
Developing new software tools for analysis of large-scale biological data is a key component of advancing modern biomedical research. Scientific reproduction of published findings requires running computational tools on data generated by such studies, yet little attention is presently allocated to the installability and archival stability of computational software tools. Scientific journals require data and code sharing, but none currently require authors to guarantee the continuing functionality of newly published tools. We have estimated the archival stability of computational biology software tools by performing an empirical analysis of the internet presence for 36,702 omics software resources published from 2005 to 2017. We found that almost 28% of all resources are currently not accessible through URLs published in the paper they first appeared in. Among the 98 software tools selected for our installability test, 51%were deemed "easy to install ," and 28% of the tools failed to be installed at all due to problems in the implementation. Moreover, for papers introducing new software, we found that the number of citations significantly increased when authors provided an easy installation process.We propose for incorporation into journal policy several practical solutions for increasing the widespread installability and archival stability of published bioinformatics software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.