This study aimed to find relationships between the properties of beeswax-based oleogels and the type of oil used. The influence of linseed, sunflower, olive, and fish oils was studied. For these oils, the fatty acid composition, the content of total polar components, and the iodine value were characterized. Textural and thermodynamic properties were determined for oleogels, the oil-binding capacity was estimated, and the morphology of crystals was studied. The concentration of beeswax in all oleogels was 6.0% w/w. It was shown that the type of oil has a significant influence on all characteristics of the oleogels. The use of different oils at the same technological treatment leads to the formation of crystals of diverse morphology—from platelets to spherulites. At the same time, it was revealed that some characteristics of oils have a varying contribution to the properties of oleogels. The content of total polar materials in oils is associated with a decrease in strength parameters (yield value and elastic modulus) and the oil-binding capacity of oleogels. In its turn, the iodine value of oils has a close positive correlation with the melting and crystallization temperatures of oleogels. The results obtained in this article indicate that the properties of beeswax-based oleogels can be directed by changing the oil composition.
The objective of this work was the fractionation of beeswax to investigate the phase behavior of binary blends of the fractions and their potential use as gelling agents in edible oleogels. We have extracted seven distinctive fractions, using preparative flash chromatography with eluents permitted to be used in the processing of food raw materials. The odor profile of the fractions was characterized. The high purity of collected fractions was shown through thin‐layer chromatography, Fourier‐transform infrared spectroscopy, and high‐performance liquid chromatography with an evaporative light scattering detector methods for hydrocarbons (94.8%), monoesters (97.6%), and mixed mono‐, di‐, and triesters fraction (98.7%). Free fatty acids and fatty alcohol fractions had lower purity which equals 82.6% and 39%, respectively. The analysis of the binary pseudo phase diagram revealed that all fractions combined with hydrocarbons express eutectic behavior. Combinations of all other fractions resulted in the formation of solid solutions. This study shows that the texture of oleogels can be improved by using a combination of various fractions of beeswax instead of native wax.
An innovative approach to creating a new generation of specialised foods for dietary therapy of type 2 diabetes can involve planned adding of plant polyphenols to their formulafions. The marked antioxidant properties of polyphenols largely determine their potential antidiabetic effects. However, the use of food polyphenols for prophylactic purposes is limited by their low bioavailability, which makes it expedient to search for technological approaches aimed at obtaining polyphenolic matrices with high biological activity, increased digestibility, and stability. This study objective was to purposely extract and concentrate the polyphenols by sorbing them from an aqueous solution of the bilberry leaf extract (BLE) on buckwheat flour and to assess their storage stability. A number of experiments on optimal parameters selection for sorbing polyphenols from the BLE on buckwheat flour were performed. The parameters included the concentration of the extract solution, the solution/sorbent ratio, the pH of the solution, the temperature and the time of sorption. The sorption on the polyphenol matrix was determined from the difference in their contents in the initial solution of the extract and in the supernatant after centrifugation by the Folin-Ciocalteu method. The effects of exposure to light, temperatures, and humidity on the polyphenol compounds in the dry BLE and in the food matrix contents during storage was analysed by the FTIR spectroscopy. The experiments determined the optimal conditions for the BLE polyphenol sorption on buckwheat flour by incubation of a 2% BLE solution pH = 3.6 with the portion of buckwheat flour at the ratio of 1g/50 cm3 solution for 45 minutes at 25°C. When storing the food matrix, there was no significant degradation of the polyphenolic compounds in the food matrix, which indicates an increase in the stability of the polyphenols sorbed on buckwheat flour. This paper presents the results that are scientifically and practically relevant for the nutritiology experts who devise promising technological approaches to expanding the range of functional food ingredients of the antidiabetic character.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.