Thermally insulating materials based on renewable nanomaterials such as nanocellulose could reduce the energy consumption and the environmental impact of the building sector. Recent reports of superinsulating cellulose nanomaterial (CNM)‐based aerogels and foams with significantly better heat transport properties than the commercially dominating materials, such as expanded polystyrene, polyurethane foams, and glass wool, have resulted in a rapidly increasing research activity. Herein, the fundamental basis of thermal conductivity of porous materials is described, and the anisotropic heat transfer properties of CNMs and films with aligned CNMs and the processing and structure of novel CNM‐based aerogels and foams with low thermal conductivities are presented and discussed. The extraordinarily low thermal conductivity of anisotropic porous architectures and multicomponent approaches are highlighted and related to the contributions of the Knudsen effect and phonon scattering.
HIGHLIGHTS • The study reveals the great potential of metal-organic framework (MOF)-based nanocomposites in thermal insulation and fire retardancy applications. • A nanoengineering approach was developed to process MOFs into freestanding, mechanically strong, and elastic aerogels, which may boost the fundamental research and practical applications of MOFs in these areas. ABSTRACT Metal-organic frameworks (MOFs) with high microporosity and relatively high thermal stability are potential thermal insulation and flame-retardant materials. However, the difficulties in processing and shaping MOFs have largely hampered their applications in these areas. This study outlines the fabrication of hybrid CNF@MOF aerogels by a stepwise assembly approach involving the coating and cross-linking of cellulose nanofibers (CNFs) with continuous nanolayers of MOFs. The cross-linking gives the aerogels high mechanical strength but superelasticity (80% maximum recoverable strain, high specific compression modulus of ~ 200 MPa cm 3 g −1 , and specific stress of ~ 100 MPa cm 3 g −1).
Nanocellulose-based lightweight foams are promising alternatives to fossil-based insulation materials for energy-efficient buildings. The properties of cellulose-based materials are strongly influenced by moisture and there is a need to assess and better understand how the thermal conductivity of nanocellulose-based foams depends on the relative humidity and temperature. Here, we report a customized setup for measuring the thermal conductivity of hydrophilic materials under controlled temperature and relative humidity conditions. The thermal conductivity of isotropic foams based on cellulose nanofibrils and a nonionic polyoxamer, and an expanded polystyrene foam was measured over a wide range of temperatures and relative humidity. We show that a previously developed model is unable to capture the strong relative humidity dependence of the thermal conductivity of the hygroscopic, low-density nanocellulose-and nonionic polyoxamer-based foam. Analysis of the moisture uptake and moisture transport was used to develop an empirical model that takes into consideration the moisture content and the wet density of the investigated foam. The new empirical model could predict the thermal conductivity of a foam with a similar composition but almost 3 times higher density.Accurate measurements of the thermal conductivity at controlled temperature and relative humidity and availability of simple models to better predict the thermal conductivity of hygroscopic, low-density foams are necessary for the development of nanocellulose-based insulation materials.
Cellulose nanofibrils (CNFs) are a unique nanomaterial because of their abundant, renewable, and biocompatible origin. Compared with synthetic nanoparticles, CNFs are commonly produced from cellulose fibers (e.g., wood pulp) by repetitive high-shear mechanical disintegration. Yet, this process is still highly demanding in energy and costly, slowing down the large-scale production and commercialization of CNFs. Reducing the energy consumption during fibers fibrillation without using any chemical or enzymatic pretreatments while sustaining the CNF quality is challenging. Here, we show that the anisotropic properties of the CNF foams are directly connected to the degree of nanofibrillation of the cellulose fibers. CNFs were produced from wood pulps using a grinder at increasing specific energy consumptions. The anisotropic CNF foams were made by directional ice templating. The porous architecture, the compressive behavior of the foams, and the CNF alignment in the foam cell walls were correlated to the degree of fibrillation. A particular value of specific energy consumption was identified with respect to the highest obtained foam properties and CNF alignment. This value indicated that the optimal degree of fibrillation, and thus CNF quality, was achieved for the studied cellulose pulp. Our approach is a straightforward tool to evaluate the CNF quality and a promising method for the benchmarking of different CNF grades.
We show that anisotropic foams based on aligned cellulose nanofibrils are superinsulating also at high relative humidity (RH). Thermal conductivity measurements and non-equilibrium molecular dynamic simulations show that the moistureinduced swelling and increase of the inter-fibrillar distance results in a reduction of the thermal boundary conductance that exceeds the thermal conductivity increase due to water uptake up to 75% RH. Phonon engineering by moisture could be used to tailor the heat transfer properties of hygroscopic nanofibrillar materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.