In this article, we present the results of developing a model based on RFR machine learning method using the ISIDA fragment descriptors for predicting the 11B NMR chemical shift of...
Understanding of the nucleation process’s fundamental principles in saturated solutions is an urgent task. To do this task, it is necessary to control the formation of polymorphic forms of biologically active compounds. In certain cases, a compound can exist in a single polymorphic form, but have several solvates which can appear in different crystal forms, depending on the medium and conditions of formation, and show different pharmaceutical activity. In the present paper, we report on the analysis of Arbidol conformational preferences in two solvents of different polarities—deuterated chloroform and dimethyl sulfoxide—at 25 °C, using the 2D NOESY method. The Arbidol molecule has various solvate forms depending on the molecular conformation. The method based on the nuclear Overhauser effect spectroscopy was shown to be efficient in the analysis of complex heterocyclic compounds possessing conformation-dependent pseudo-polymorphism. It is one of the types of polymorphism observed in compounds forming crystal solvates. Combined use of NMR methods and X-ray data allowed determining of conformer populations of Arbidol in CDCl3 and DMSO-d6 which were found to be 8/92% and 37/63%, respectively. The preferred conformation in solution is the same that appears in stable crystal solvates of Arbidol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.