Cancer progression often benefits from the selective conditions present in the tumour microenvironment, such as the presence of cancer-associated fibroblasts (CAFs), deregulated ECM deposition, expanded vascularisation and repression of the immune response. Generation of a hypoxic environment and activation of its main effector, hypoxia-inducible factor-1 (HIF-1), are common features of advanced cancers. In addition to the impact on tumour cell biology, the influence that hypoxia exerts on the surrounding cells represents a critical step in the tumorigenic process. Hypoxia indeed enables a number of events in the tumour microenvironment that lead to the expansion of aggressive clones from heterogeneous tumour cells and promote a lethal phenotype. In this article, we review the most relevant findings describing the influence of hypoxia and the contribution of HIF activation on the major components of the tumour microenvironment, and we summarise their role in cancer development and progression.
Background. COVID-19 patients develop pneumonia generally associated to lymphopenia and severe inflammatory response due to uncontrolled cytokine release. These mediators are transcriptionally regulated by the JAK-STAT signaling pathways, which can be disabled by small molecules. Methods. A group of subjects (n = 20) was treated with baricitinib according to an offlabel use of the drug. The study was designed as an observational longitudinal trial and approved by the local ethical committee. The patients were treated with baricitinib 4 mg twice daily for 2 days, followed by 4 mg per day for the remaining 7 days. Changes in the immune phenotype and expression of pSTAT3 in blood cells were evaluated and correlated with serum-derived cytokine levels and antibodies anti-SARS-CoV-2. In a single treated patient, we evaluated also the alteration of myeloid cell functional activity. Results. We provided evidence that baricitinib-treated patients have a marked reduction in serum levels of interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-a, a rapid recovery in circulating T and B cell frequencies, and increased antibody production against SARS-CoV-2 spike protein, which were clinically associated with a reduction in oxygen flow need and progressive increase in the P/F. Conclusion. These data suggest that Baricitinib prevented the progression towards a severe/extreme form of the viral disease by modulating the patients' immune landscape and these changes were associated with a safer and favorable clinical outcome of patients with COVID-19 pneumonia. Trial registration. The ClinicalTrials.gov identifier of this project is protocol NCT04438629.
Objective: Pulmonary thrombosis is observed in severe acute respiratory syndrome coronavirus 2 pneumonia. Aim was to investigate whether subpopulations of platelets were programmed to procoagulant and inflammatory activities in coronavirus disease 2019 (COVID-19) patients with pneumonia, without comorbidities predisposing to thromboembolism. Approach and Results: Overall, 37 patients and 28 healthy subjects were studied. Platelet-leukocyte aggregates, platelet-derived microvesicles, the expression of P-selectin, and active fibrinogen receptor on platelets were quantified by flow cytometry. The profile of 45 cytokines, chemokines, and growth factors released by platelets was defined by immunoassay. The contribution of platelets to coagulation factor activity was selectively measured. Numerous platelet-monocyte (mean±SE, 67.9±4.9%, n=17 versus 19.4±3.0%, n=22; P <0.0001) and platelet-granulocyte conjugates (34.2±4.04% versus 8.6±0.7%; P <0.0001) were detected in patients. Resting patient platelets had similar levels of P-selectin (10.9±2.6%, n=12) to collagen-activated control platelets (8.7±1.5%), which was not further increased by collagen activation on patient platelets (12.4±2.5%, P =nonsignificant). The agonist-stimulated expression of the active fibrinogen receptor was reduced by 60% in patients ( P <0.0001 versus controls). Cytokines (IL [interleukin]-1α, IL-1β, IL-1RA, IL-4, IL-10, IL-13, IL, 17, IL-27, IFN [interferon]-α, and IFN-γ), chemokines (MCP-1/CCL2), and growth factors (VEGF [vascular endothelial growth factor]-A/D) were released in significantly larger amounts upon stimulation of COVID-19 platelets. Platelets contributed to increased fibrinogen, VWF (von Willebrand factor), and factor XII in COVID-19 patients. Patients (28.5±0.7 s, n=32), unlike controls (31.6±0.5 s, n=28; P <0.001), showed accelerated factor XII–dependent coagulation. Conclusions: Platelets in COVID-19 pneumonia are primed to spread proinflammatory and procoagulant activities in systemic circulation.
SignificanceExpression in cancer cells of novel proteins generated by mutations in the TP53 gene is an important prognostic factor; however, how p53 mutants promote cancer progression is largely unknown. Here, we describe a molecular mechanism of gain-of-function by mutant p53 in hypoxic non-small cell lung cancer (NSCLC) cells. We identified the existence of a hypoxia-inducible factor-1 (HIF-1)/mutant p53 complex, exerting transcriptional control of a specific subset of protumorigenic genes, codifying for extracellular matrix (ECM) components. Employing in vivo cancer models and analyzing clinical material, we demonstrate that these ECM components substantially contribute to the synergistic protumorigenic activity of p53 mutants and HIF-1. Our data indicate that HIF-1/mutant p53 cross-talk is an innovative potential therapeutic target to treat advanced NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.