In this article the new hybrid iris image segmentation method based on convolutional neural networks and mathematical methods is proposed. Iris boundaries are found using modified Daugman’s method. Two UNet-based convolutional neural networks are used for iris mask detection. The first one is used to predict the preliminary iris mask including the areas of the pupil, eyelids and some eyelashes. The second neural network is applied to the enlarged image to specify thin ends of eyelashes. Then the principal curvatures method is used to combine the predicted by neural networks masks and to detect eyelashes correctly. The pro- posed segmentation algorithm is tested using images from CASIA IrisV4 Interval database. The results of the proposed method are evaluated by the Intersection over Union, Recall and Precision metrics. The average metrics values are 0.922, 0.957 and 0.962, respectively. The proposed hy- brid iris image segmentation approach demonstrates an improvement in comparison with the methods that use only neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.