BackgroundMucins are heavily O-glycosylated proteins where the glycosylation has been shown to play an important role in cancer. Normal epithelial ovarian cells do not express secreted mucins, but their abnormal expression has previously been described in epithelial ovarian cancer and may relate to tumor formation and progression. The cyst fluids were shown to be a rich source for acidic glycoproteins. The study of these proteins can potentially lead to the identification of more effective biomarkers for ovarian cancer.MethodsIn this study, we analyzed the expression of the MUC5AC and the O-glycosylation of acidic glycoproteins secreted into ovarian cyst fluids. The samples were obtained from patients with serous and mucinous ovarian tumors of different stages (benign, borderline, malignant) and grades. The O-linked oligosaccharides were released and analyzed by negative-ion graphitized carbon Liquid Chromatography (LC) coupled to Electrospray Ionization tandem Mass Spectrometry (ESI-MSn). The LC-ESI-MSn of the oligosaccharides from ovarian cyst fluids displayed differences in expression of fucose containing structures such as blood group ABO antigens and Lewis-type epitopes.ResultsThe obtained data showed that serous and mucinous benign adenomas, mucinous low malignant potential carcinomas (LMPs, borderline) and mucinous low-grade carcinomas have a high level of blood groups and Lewis type epitopes. In contrast, this type of fucosylated structures were low abundant in the high-grade mucinous carcinomas or in serous carcinomas. In addition, the ovarian tumors that showed a high level of expression of blood group antigens also revealed a strong reactivity towards the MUC5AC antibody. To visualize the differences between serous and mucinous ovarian tumors based on the O-glycosylation, a hierarchical cluster analysis was performed using mass spectrometry average compositions (MSAC).ConclusionMucinous benign and LMPs along with mucinous low-grade carcinomas appear to be different from serous and high-grade mucinous carcinomas based on their O-glycan profiles.
The genes of the lic1 operon (lic1A to lic1D) are responsible for incorporation of phosphocholine (PCho) into the lipopolysaccharide (LPS) of Haemophilus influenzae. PCho plays a multifaceted role in the commensal and pathogenic lifestyles of a range of mucosal pathogens, including H. influenzae. Structural studies of the LPS of nontypeable H. influenzae (NTHI) have revealed that PCho can be linked to a hexose on any one of the oligosaccharide chain extensions from the conserved inner core triheptosyl backbone. In a collection of NTHI strains we found several strains in which there were two distinct but variant lic1D DNA sequences, genes predicted to encode the transferase responsible for directing the addition of PCho to LPS. The same isolates were also found to express concomitantly two PCho residues at distinct positions in their LPS. In one such NTHI isolate, isolate 1158, structural analysis of LPS from lic1 mutants confirmed that each of the two copies of lic1D directs the addition of PCho to a distinct location on the LPS. One position for PCho addition is a novel heptose, which is part of the oligosaccharide extension from the proximal heptose of the LPS inner core. Modification of the LPS by addition of two PCho residues resulted in increased binding of C-reactive protein and had consequential effects on the resistance of the organism to the killing effects of normal human serum compared to the effects of glycoforms containing one or no PCho. When bound, C-reactive protein leads to complement-mediated killing, indicating the potential biological significance of multiple PCho residues.Phosphocholine (PCho) has been detected on the cell surface of a range of bacteria, predominantly bacteria residing in the human respiratory tract, such as Haemophilus influenzae (5,25,39). In H. influenzae, PCho is a substituent of the lipopolysaccharide (LPS) molecule (24,25,39), the main glycolipid on the bacterial cell surface that is a target for host immune responses and influences both the commensal and pathogenic behavior of the organism (38). H. influenzae LPS comprises a membrane-anchoring lipid A (endotoxin) linked to oligosaccharide chains that extend from the bacterial cell surface. The LPS of a number of different strains have been analyzed and have been shown to be composed of a common L-glycero-Dmanno-heptose-containing inner-core trisaccharide unit attached to the lipid A via a phosphorylated 2-keto-3-deoxyoctulosonic acid (Kdo) residue (20, 23). Each of the heptose (Hep) residues can provide a point for addition of a hexose (Hex) residue, which in turn can lead to oligosaccharide chain extension (for a review, see reference 28). The nature of the oligosaccharide chains and the degree to which they contain noncarbohydrate substituents, such as PCho, show intra-and interstrain variation that can affect the virulence of the organism. PCho in H. influenzae LPS plays a role in persistence of the bacterium on the mucosal surface of the nasopharynx, at least in part by mediating bacterial adherence to, and invasi...
The non-typeable Haemophilus influenzae strain DH1 was isolated from a 25 year old male patient with Fisher syndrome, a postinfectious autoimmune condition characterized by the presence of anti-GQ1b IgG antibodies that target and initiate damage to peripheral nerves. DH1 was found to display an alphaNeuAc(2-8)alphaNeuAc(2-3)betaGal branch bound to the tetraheptosyl backbone core of its lipooligosaccharide (LOS). The novel sialylation pattern was found to be dependent on the activity of a bifunctional sialyltransferase, Lic3B, which catalyzes the addition of both the terminal and subterminal sialic acid residues. Patient serum IgGs bind to DH1 LOS, and the reactivity is significantly influenced by the presence of sialylated glycoforms. The display by DH1, of a surface glycan that mimics the terminal trisaccharide portion of disialosyl-containing gangliosides, provides strong evidence for its involvement in the development of Fisher syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.