A vortex‐assisted surfactant enhanced emulsification liquid‐liquid microextraction based on non‐ionic silicone surfactant was successfully developed for the determination of organophosphorus pesticides in food samples coupled to gas chromatography‐mass spectrometry. A new type of non‐ionic silicone surfactant composed of polysiloxane chains was employed as a green emulsifier to facilitate the emulsification of extraction solvent into the sample matrix, thereby intensifying the mass transfer of target analytes into the organic phase. The variables that affect the extraction were systematically optimized: 80 μl of hexane and 0.5% (v/v) of silicone surfactant were used as extraction solvent and surfactant respectively, the solution was mixed well under vortex agitation for 1 min with the addition of 4% (w/v) sodium sulfate. Under optimum conditions, the linearity of the method was obtained in the range of 0.1–200 μg/kg with a good coefficient of determination varying from 0.9986 to 0.9996. The limit of detection and the limit of quantitation were between 0.008–0.1 and 0.02–0.3 μg/kg, respectively. Application of the proposed method to real samples gave satisfactory recovery values (80%–118%) for the target analytes. The suggested approach has also proven to be convenient, expeditious, and environmentally benign.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.