The identification and characterization of B-cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting linear B-cell epitopes are highly desirable. We evaluated Support Vector Machine (SVM) classifiers trained utilizing five different kernel methods using fivefold cross-validation on a homology-reduced data set of 701 linear B-cell epitopes, extracted from Bcipep database, and 701 non-epitopes, randomly extracted from SwissProt sequences. Based on the results of our computational experiments, we propose BCPred, a novel method for predicting linear B-cell epitopes using the subsequence kernel. We show that the predictive performance of BCPred (AUC = 0.758) outperforms 11 SVM-based classifiers developed and evaluated in our experiments as well as our implementation of AAP (AUC = 0.7), a recently proposed method for predicting linear B-cell epitopes using amino acid pair antigenicity. Furthermore, we compared BCPred with AAP and ABCPred, a method that uses recurrent neural networks, using two data sets of unique B-cell epitopes that had been previously used to evaluate ABCPred. Analysis of the data sets used and the results of this comparison show that conclusions about the relative performance of different B-cell epitope prediction methods drawn on the basis of experiments using data sets of unique B-cell epitopes are likely to yield overly optimistic estimates of performance of evaluated methods. This argues for the use of carefully homology-reduced data sets in comparing B-cell epitope prediction methods to avoid misleading conclusions about how different methods compare to each other. Our homologyreduced data set and implementations of BCPred as well as the APP method are publicly available through our web-based server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/.
BackgroundRNA-protein interactions (RPIs) play important roles in a wide variety of cellular processes, ranging from transcriptional and post-transcriptional regulation of gene expression to host defense against pathogens. High throughput experiments to identify RNA-protein interactions are beginning to provide valuable information about the complexity of RNA-protein interaction networks, but are expensive and time consuming. Hence, there is a need for reliable computational methods for predicting RNA-protein interactions.ResultsWe propose RPISeq, a family of classifiers for predicting RNA-protein interactions using only sequence information. Given the sequences of an RNA and a protein as input, RPIseq predicts whether or not the RNA-protein pair interact. The RNA sequence is encoded as a normalized vector of its ribonucleotide 4-mer composition, and the protein sequence is encoded as a normalized vector of its 3-mer composition, based on a 7-letter reduced alphabet representation. Two variants of RPISeq are presented: RPISeq-SVM, which uses a Support Vector Machine (SVM) classifier and RPISeq-RF, which uses a Random Forest classifier. On two non-redundant benchmark datasets extracted from the Protein-RNA Interface Database (PRIDB), RPISeq achieved an AUC (Area Under the Receiver Operating Characteristic (ROC) curve) of 0.96 and 0.92. On a third dataset containing only mRNA-protein interactions, the performance of RPISeq was competitive with that of a published method that requires information regarding many different features (e.g., mRNA half-life, GO annotations) of the putative RNA and protein partners. In addition, RPISeq classifiers trained using the PRIDB data correctly predicted the majority (57-99%) of non-coding RNA-protein interactions in NPInter-derived networks from E. coli, S. cerevisiae, D. melanogaster, M. musculus, and H. sapiens.ConclusionsOur experiments with RPISeq demonstrate that RNA-protein interactions can be reliably predicted using only sequence-derived information. RPISeq offers an inexpensive method for computational construction of RNA-protein interaction networks, and should provide useful insights into the function of non-coding RNAs. RPISeq is freely available as a web-based server at http://pridb.gdcb.iastate.edu/RPISeq/.
Abstract-We introduce Learn++, an algorithm for incremental training of neural network (NN) pattern classifiers. The proposed algorithm enables supervised NN paradigms, such as the multilayer perceptron (MLP), to accommodate new data, including examples that correspond to previously unseen classes. Furthermore, the algorithm does not require access to previously used data during subsequent incremental learning sessions, yet at the same time, it does not forget previously acquired knowledge. Learn++ utilizes ensemble of classifiers by generating multiple hypotheses using training data sampled according to carefully tailored distributions. The outputs of the resulting classifiers are combined using a weighted majority voting procedure. We present simulation results on several benchmark datasets as well as a real-world classification task. Initial results indicate that the proposed algorithm works rather well in practice. A theoretical upper bound on the error of the classifiers constructed by Learn++ is also provided.Index Terms-Catastrophic forgetting, classification algorithms, ensemble of classifiers, incremental learning, knowledge acquisition and retention, pattern recognition, supervised neural networks.
Creative use of new mobile and wearable health information and sensing technologies (mHealth) has the potential to reduce the cost of health care and improve well-being in numerous ways. These applications are being developed in a variety of domains, but rigorous research is needed to examine the potential, as well as the challenges, of utilizing mobile technologies to improve health outcomes. Currently, evidence is sparse for the efficacy of mHealth. Although these technologies may be appealing and seemingly innocuous, research is needed to assess when, where, and for whom mHealth devices, apps, and systems are efficacious. In order to outline an approach to evidence generation in the field of mHealth that would ensure research is conducted on a rigorous empirical and theoretic foundation, on August 16, 2011, researchers gathered for the mHealth Evidence Workshop at NIH. The current paper presents the results of the workshop. Although the discussions at the meeting were cross-cutting, the areas covered can be categorized broadly into three areas: (1) evaluating assessments; (2) evaluating interventions; and, (3) reshaping evidence generation using mHealth. This paper brings these concepts together to describe current evaluation standards, future possibilities and set a grand goal for the emerging field of mHealth research.
RNA-protein interactions are vitally important in a wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses. We have developed a computational tool for predicting which amino acids of an RNA binding protein participate in RNA-protein interactions, using only the protein sequence as input. RNABindR was developed using machine learning on a validated nonredundant data set of interfaces from known RNA-protein complexes in the Protein Data Bank. It generates a classifier that captures primary sequence signals sufficient for predicting which amino acids in a given protein are located in the RNA-protein interface. In leave-oneout cross-validation experiments, RNABindR identifies interface residues with >85% overall accuracy. It can be calibrated by the user to obtain either high specificity or high sensitivity for interface residues. RNABindR, implementing a Naive Bayes classifier, performs as well as a more complex neural network classifier (to our knowledge, the only previously published sequence-based method for RNA binding site prediction) and offers the advantages of speed, simplicity and interpretability of results. RNABindR predictions on the human telomerase protein hTERT are in good agreement with experimental data. The availability of computational tools for predicting which residues in an RNA binding protein are likely to contact RNA should facilitate design of experiments to directly test RNA binding function and contribute to our understanding of the diversity, mechanisms, and regulation of RNA-protein complexes in biological systems. (RNABindR is available as a Web tool from http://bindr.gdcb.iastate.edu.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.