We present a computational study of the near-field enhancement properties from a plasmonic nanomaterial based on a silver nanoparticle on a gold film. Our simulation studies show a clear distinguishability between nanoparticle mode and gap mode as a function of dielectric layer thickness. The observed nanoparticle mode is independent of dielectric layer thickness, and hence its related plasmonic properties can be investigated clearly by having a minimum of ~10-nm-thick dielectric layer on a metallic film. In case of the gap mode, the presence of minimal dielectric layer thickness is crucial (~≤4 nm), as deterioration starts rapidly thereafter. The proposed simple tunable gap-based particle on film design might open interesting studies in the field of plasmonics, extreme light confinement, sensing, and source enhancement of an emitter.
M13 bacteriophage-based colorimetric sensors, especially multi-array sensors, have been successfully demonstrated to be a powerful platform for detecting extremely small amounts of target molecules. Colorimetric sensors can be fabricated easily using self-assembly of genetically engineered M13 bacteriophage which incorporates peptide libraries on its surface. However, the ability to discriminate many types of target molecules is still required. In this work, we introduce a statistical method to efficiently analyze a huge amount of numerical results in order to classify various types of target molecules. To enhance the selectivity of M13 bacteriophage-based colorimetric sensors, a multi-array sensor system can be an appropriate platform. On this basis, a pattern-recognizing multi-array biosensor platform was fabricated by integrating three types of sensors in which genetically engineered M13 bacteriophages (wild-, RGD-, and EEEE-type) were utilized as a primary building block. This sensor system was used to analyze a pattern of color change caused by a reaction between the sensor array and external substances, followed by separating the specific target substances by means of hierarchical cluster analysis. The biosensor platform could detect drug contaminants such as hormone drugs (estrogen) and antibiotics. We expect that the proposed biosensor system could be used for the development of a first-analysis kit, which would be inexpensive and easy to supply and could be applied in monitoring the environment and health care.
Carbon nanotube electrode–laminated perovskite solar cells in combination with n‐type tunnel oxide–passivated contact silicon solar cells demonstrate a high power conversion efficiency (PCE) of 24.42% when stacked in tandem. This is compared with conventional indium tin oxide/MoOx‐deposited perovskite solar cells which give an efficiency of 22.35% when stacked in the same four‐terminal tandem system. Despite higher transmittance of the carbon nanotube electrode than that of the indium tin oxide/MoOx in the infrared range, the carbon nanotube electrode‐laminated devices show lower transmittance in the same region due to the total internal reflection and scattering as evidenced by optical simulation. Yet, the exceptionally high PCE of the carbon nanotube electrode‐laminated semitransparent devices far exceeding than that of the indium tin oxide/MoOx‐deposited semitransparent top cell outweighs the effect of the optical transparency. Four types of silicon solar cells are compared as the bottom subcells, and the n‐type tunnel oxide‐passivated contact silicon solar cells are the best choice mainly due to their high absorption in the long‐wavelength region. The obtained 24.42% efficiency is one of the high PCEs among the reported four‐terminal perovskite–silicon solar cells, and this article is the first demonstration of the carbon nanotube electrode application in tandem solar cells.
A three-dimensional finite-difference time-domain study of the plasmonic structure of nanoparticles on metallic film (NPOM) is presented in this work. An introduction to nanoparticle (NP) faceting in the NPOM structure produced a variety of complex transverse cavity modes, which were labeled S11 to S13. We observed that the dominant S11 mode resonance could be tuned to the desired wavelength within a broadband range of ~800 nm, with a maximum resonance up to ~1.42 µm, as a function of NP facet width. Despite being tuned at the broad spectral range, the S11 mode demonstrated minimal decrease in its near field enhancement characteristics, which can be advantageous for surface-enhanced spectroscopy applications and device fabrication perspectives. The identification of mode order was interpreted using cross-sectional electric field profiles and three-dimensional surface charge mapping. We realized larger local field enhancement in the order of ~109, even for smaller NP diameters of 50 nm, as function of the NP faceting effect. The number of radial modes were dependent upon the combination of NP diameter and faceting length. We hope that, by exploring the sub-wavelength complex optical properties of the plasmonic structures of NPOM, a variety of exciting applications will be revealed in the fields of sensors, non-linear optics, device engineering/processing, broadband tunable plasmonic devices, near-infrared plasmonics, and surface-enhanced spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.