Background Automatic coronary angiography (CAG) assessment may help in faster screening and diagnosis of patients. Current CNN-based vessel-segmentation suffers from sampling imbalance, candidate frame selection, and overfitting; few have shown adequate performance for CAG stenosis classification. We aimed to provide an end-to-end workflow that may solve these problems. Methods A deep learning-based end-to-end workflow was employed as follows: 1) Candidate frame selection from CAG videograms with CNN+LSTM network, 2) Stenosis classification with Inception-v3 using 2 or 3 categories (<25%, >25%, and/or total occlusion) with and without redundancy training, and 3) Stenosis localization with two methods of class activation map (CAM) and anchor-based feature pyramid network (FPN). Overall 13744 frames from 230 studies were used for the stenosis classification training and 4-fold cross-validation for image-, artery-, and per-patient-level. For the stenosis localization training and 4-fold cross-validation, 690 images with >25% stenosis were used. Results Our model achieved an accuracy of 0.85, sensitivity of 0.96, and AUC of 0.86 in per-patient level stenosis classification. Redundancy training was effective to improve classification performance. Stenosis position localization was adequate with better quantitative results in anchor-based FPN model, achieving global-sensitivity for LCA and RCA of 0.68 and 0.70 with mean square error (MSE) values of 39.3 and 37.6 pixels respectively, in the 520 × 520 pixel image. Conclusion A fully-automatic end-to-end deep learning-based workflow that eliminates the vessel extraction and segmentation step was feasible in coronary artery stenosis classification and localization on CAG images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.