Residual stresses play a crucial role in the functional life of the component. Stresses develop because of mechanical and thermal loads during machining. Usually, compressive residual stresses are desirable for an improved fatigue life of the component. This study focuses on the effects of machining parameters on residual stresses while machining Ti-6Al-4V. A finite element model was developed and validated with experimental results. Different levels of cutting speed, feed rate, and depth of cut are used for evaluating residual stress, cutting force, and cutting temperature. Statistical modeling and optimization are carried out using response surface methodology. From the results it is observed that a machining speed of 45 m/min, a feed of 0.1 mm/rev, and a depth of cut of 1.84 mm help attain better responses. The feed and speed directly influence the residual stresses developed in machining. However, feed was found to be a more dominating parameter than speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.