We report a comprehensive study of the ground-state properties of one and two bosonic impurities immersed in small one-dimensional optical lattices loaded with a few interacting bosons. We model the system with a two-component Bose-Hubbard model and solve the problem numerically by means of the exact diagonalization (ED) method. We report binding energies of one and two impurities across the superfluid (SF) to Mott-insulator (MI) transition and confirm the formation of two-body bound states of impurities induced by repulsive interactions. In particular, we found that an insulator bath induces tightly bound di-impurity dimers, whereas a superfluid bath induces shallower bound states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.