Fused Filament Fabrication is one of the most common Additive Manufacturing technologies among industrial and domestic users because of the satisfying quality of parts and the great variety of thermoplastic polymers available on the market. New possibilities were provided along with the equipment with multiple extrusion systems, referring to multi-colour and multi-material components. Besides part orientation during the manufacturing process, filament bond influences the mechanical properties of parts produced through Fused Filament Fabrication technology. This paper aims to investigate if the bond performance for polylactic acid-based polymers can be enhanced by designing new contact geometries, different from the current surface-to-surface approach. To comprehensively understand the influence of the designed bonding geometries over the tensile strength, all specimens were produced according to a factorial design of experiment method and contact geometries constrained with function related to the nozzle size.
The strength of a joint between the ends of one or more strips can be improved by making the contours of the joint into the shape of either the Greek letter omega or of a dovetail. From the point of view of industrial practice, it is of interest to study the behavior of these joints under stretching demands. The emergence and development of additive manufacturing processes for parts made of polymeric materials has led to the idea of conducting experimental tests to highlight the behavior of omega and dovetail-type joints during the tensile test. For the tensile testing of some test samples in which omega and dovetail joints were used, a Taguchi array of type L18 was employed, with eight independent variables, one variable with a two-level variation, and seven variables with variations on three levels. As independent variables, the type of joint, the couple of polymer materials used to make the two components of the joint, some characteristic dimensions of the joint contours, and some input factors in the 3D printing process were established. The values of average force and average displacement at the peak were considered output parameters. The experimental results were mathematically processed, determining empirical mathematical models of the second-degree polynomial type. These models highlight the influence exerted by the considered input factors on the values of the output parameters.
Fused filament fabrication is a technology of additive manufacturing that uses molten thermoplastics for building parts. Due to the convenient shape of the raw material, a simple filament, the market offers a great variety of materials from simple to blends of compatible materials. However, finding a material with the desired properties can be difficult. Making it in-house or using a material manufacturer can be costly and time-consuming, especially when the optimum blend ratios are unknown or new design perspectives are tested. This paper presents an accessible method of producing core-shell filaments using material extrusion 3D printing. The printed filaments are characterised by a polycarbonate (PC) core and acryl butadiene styrene (ABS) shell with three material ratios. Their performance was investigated through printed samples. Additionally, the material mixing degree was studied by varying the extrusion temperature, nozzle feeding geometry, and layer thickness. The influence of all four factors was evaluated using a graphical representation of the main effects. The results showed that a core-shell filament can be processed using a 3D printer with a dual extrusion configuration and that the mechanical properties of the samples can be improved by varying the PC–ABS ratio. This research provides an accessible method for developing new hybrid filaments with a predesigned structure using a 3D printer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.