A large family of new α-weighted group entropy functionals is defined and associated Fisher-like metrics are considered. All these notions are well-suited semi-Riemannian tools for the geometrization of entropy-related statistical models, where they may act as sensitive controlling invariants. The main result of the paper establishes a link between such a metric and a canonical one. A sufficient condition is found, in order that the two metrics be conformal (or homothetic). In particular, we recover a recent result, established for α=1 and for non-weighted relative group entropies. Our conformality condition is “universal”, in the sense that it does not depend on the group exponential.
The paper generalizes and extends the notions of dual connections and of statistical manifold, with and without torsion. Links with the deformation algebras and with the Riemannian Rinehart algebras are established. The semi-Riemannian manifolds admitting flat dual connections with torsion are characterized, thus solving a problem suggested in 2000 by S. Amari and H. Nagaoka. New examples of statistical manifolds are constructed, within and beyond the classical setting. The invariant statistical structures on Lie groups are characterized and the dimension of their set is determined. Examples for the new defined geometrical objects are found in the theory of Information Geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.