Recently, H.265/MPEG-H or high efficiency video coding (HEVC) as it is well known, has been established as better compression standard due to reduction of about 50 % bit-rate for same video quality and less bandwidth consumption, compared to its predecessor H.264/MPEG-advanced video coding standard. Many algorithms have been proposed and developed for efficient and secure streaming of multimedia files. However, these methods do not meet all the requirements of effective and secure transmission over the internet. In this paper, we present a new encryption and transmission algorithm for efficient HEVC delivery. Experimental results demonstrate that our proposed algorithm is more secure and effective compared to previous algorithms used for H.264 standard and shows better overall performance.
Current medical methods still confront numerous limitations and barriers to detect and fight against illnesses and disorders. The introduction of emerging technologies in the healthcare industry is anticipated to enable novel medical techniques for an efficient and effective smart healthcare system. Internet of Things (IoT), Wireless Sensor Networks (WSN), Big Data Analytics (BDA), and Cloud Computing (CC) can play a vital role in the instant detection of illnesses, diseases, viruses, or disorders. Complicated techniques such as Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) could provide acceleration in drug and antibiotics discovery. Moreover, the integration of visualization techniques such as Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) with Tactile Internet (TI), can be applied from the medical staff to provide the most accurate diagnosis and treatment for the patients. A novel system architecture, which combines several future technologies, is proposed in this paper. The objective is to describe the integration of a mixture of emerging technologies in assistance with advanced networks to provide a smart healthcare system that may be established in hospitals or medical centers. Such a system will be able to deliver immediate and accurate data to the medical stuff in order to aim them in order to provide precise patient diagnosis and treatment.
Abstract-Today the new technology concept, called "Internet of Things" (IoT), presents a significant field of research, due to the fact that it promises many advantages to the users worldwide. Besides this, multimedia file streaming tends to be a daily user habit, as a result of the evolution of the internet and the capabilities of devices, such as mobile phones and computers. This tendency has established Cloud Computing (CC) as a vital technology due to the fact that it reduces economic costs, improves accessibility and flexibility, while it increases the total network performance too. This paper demonstrates a new technological approach for IoT architecture, where a layered implementation with the use of many cloud servers can offer optimized streaming and download, because of the significant reduction of the transfer time costs and the storage space of the Main Cloud Server (MCS). Moreover, users will have the ability to choose or adapt to their devices' restrictions, between low -up toUltra-High Definition (UHD) quality for multimedia access and downloading, thanks to a new quality scalability feature which is introduced and is based on the new High-Efficiency Video Coding (HEVC) compression standard. Experimental results show the efficiency of the proposed approach with math formulas and graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.