This perspective summarizes how to accurately determine voltage losses and optical gaps, aiming to facilitate comparisons between organic photovoltaic materials.
Organic photodetectors have promising applications in low-cost imaging, health monitoring and near-infrared sensing. Recent research on organic photodetectors based on donor–acceptor systems has resulted in narrow-band, flexible and biocompatible devices, of which the best reach external photovoltaic quantum efficiencies approaching 100%. However, the high noise spectral density of these devices limits their specific detectivity to around 1013 Jones in the visible and several orders of magnitude lower in the near-infrared, severely reducing performance. Here, we show that the shot noise, proportional to the dark current, dominates the noise spectral density, demanding a comprehensive understanding of the dark current. We demonstrate that, in addition to the intrinsic saturation current generated via charge-transfer states, dark current contains a major contribution from trap-assisted generated charges and decreases systematically with decreasing concentration of traps. By modeling the dark current of several donor–acceptor systems, we reveal the interplay between traps and charge-transfer states as source of dark current and show that traps dominate the generation processes, thus being the main limiting factor of organic photodetectors detectivity.
High photon energy losses limit the open‐circuit voltage (VOC) and power conversion efficiency of organic solar cells (OSCs). In this work, an optimization route is presented which increases the VOC by reducing the interfacial area between donor (D) and acceptor (A). This optimization route concerns a cascade device architecture in which the introduction of discontinuous interlayers between alpha‐sexithiophene (α‐6T) (D) and chloroboron subnaphthalocyanine (SubNc) (A) increases the VOC of an α‐6T/SubNc/SubPc fullerene‐free cascade OSC from 0.98 V to 1.16 V. This increase of 0.18 V is attributed solely to the suppression of nonradiative recombination at the D–A interface. By accurately measuring the optical gap (Eopt) and the energy of the charge‐transfer state (ECT) of the studied OSC, a detailed analysis of the overall voltage losses is performed. Eopt – qVOC losses of 0.58 eV, which are among the lowest observed for OSCs, are obtained. Most importantly, for the VOC‐optimized devices, the low‐energy (700 nm) external quantum efficiency (EQE) peak remains high at 79%, despite a minimal driving force for charge separation of less than 10 meV. This work shows that low‐voltage losses can be combined with a high EQE in organic photovoltaic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.