The field of random vibrations of large-scale systems with millions of degrees-of-freedom (DOF) is of significant importance in many engineering disciplines. In this paper, we propose a method to calculate the time-dependent reliability of linear vibratory systems with random parameters excited by nonstationary Gaussian processes. The approach combines principles of random vibrations, the total probability theorem, and recent advances in time-dependent reliability using an integral equation involving the upcrossing and joint upcrossing rates. A space-filling design, such as optimal symmetric Latin hypercube (OSLH) sampling, is first used to sample the input parameter space. For each design point, the corresponding conditional time-dependent probability of failure is calculated efficiently using random vibrations principles to obtain the statistics of the output process and an efficient numerical estimation of the upcrossing and joint upcrossing rates. A time-dependent metamodel is then created between the input parameters and the output conditional probabilities allowing us to estimate the conditional probabilities for any set of input parameters. The total probability theorem is finally applied to calculate the time-dependent probability of failure. The proposed method is demonstrated using a vibratory beam example.
The paper proposes a new methodology for time-dependent reliability analysis of vibratory systems using a combination of a first-order, four-moment (FOFM) method and a non-Gaussian Karhunen–Loeve (NG-KL) expansion. The approach can also be used for random vibrations studies. The vibratory system is nonlinear and is excited by stationary non-Gaussian input random processes which are characterized by their first four marginal moments and autocorrelation function. The NG-KL expansion expresses each input non-Gaussian process as a linear combination of uncorrelated, non-Gaussian random variables and computes their first four moments. The FOFM method then uses the moments of the NG-KL variables to calculate the moments and autocorrelation function of the output processes based on a first-order Taylor expansion (linearization) of the system equations of motion. Using the output moments and autocorrelation function, another NG-KL expansion expresses the output processes in terms of uncorrelated non-Gaussian variables in the time domain, allowing the generation of output trajectories. The latter are used to estimate the time-dependent probability of failure using Monte Carlo simulation (MCS). The computational cost of the proposed approach is proportional to the number of NG-KL random variables and is significantly lower than that of other recently developed methodologies which are based on sampling. The accuracy and efficiency of the proposed methodology is demonstrated using a two-degree-of-freedom nonlinear vibratory system with random coefficients excited by a stationary non-Gaussian random process.
Using the total probability theorem, we propose a method to calculate the failure rate of a linear vibratory system with random parameters excited by stationary Gaussian processes. The response of such a system is non-stationary because of the randomness of the input parameters. A space-filling design, such as optimal symmetric Latin hypercube sampling or maximin, is first used to sample the input parameter space. For each design point, the output process is stationary and Gaussian. We present two approaches to calculate the corresponding conditional probability of failure. A Kriging metamodel is then created between the input parameters and the output conditional probabilities allowing us to estimate the conditional probabilities for any set of input parameters. The total probability theorem is finally applied to calculate the time-dependent probability of failure and the failure rate of the dynamic system. The proposed method is demonstrated using a vibratory system. Our approach can be easily extended to non-stationary Gaussian input processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.