We consider the problem of trajectory planning in an environment comprised of a set of obstacles with uncertain locations. While previous approaches model the uncertainties with a prescribed Gaussian distribution, we consider the realistic case in which the distribution's moments are unknown and are learned online. We derive tight concentration bounds on the error of the estimated moments. These bounds are then used to derive a tractable and tight mixed-integer convex reformulation of the trajectory planning problem, assuming linear dynamics and polyhedral constraints. The solution of the resulting optimization program is a feasible solution for the original problem with high confidence. We illustrate the approach with a case study from autonomous driving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.