This study aimed to propose an approach for orchard trees segmentation using aerial images based on a deep learning convolutional neural network variant, namely the U-net network. The purpose was the automated detection and localization of the canopy of orchard trees under various conditions (i.e., different seasons, different tree ages, different levels of weed coverage). The implemented dataset was composed of images from three different walnut orchards. The achieved variability of the dataset resulted in obtaining images that fell under seven different use cases. The best-trained model achieved 91%, 90%, and 87% accuracy for training, validation, and testing, respectively. The trained model was also tested on never-before-seen orthomosaic images or orchards based on two methods (oversampling and undersampling) in order to tackle issues with out-of-the-field boundary transparent pixels from the image. Even though the training dataset did not contain orthomosaic images, it achieved performance levels that reached up to 99%, demonstrating the robustness of the proposed approach.
Incorporating hand gesture recognition in human–robot interaction has the potential to provide a natural way of communication, thus contributing to a more fluid collaboration toward optimizing the efficiency of the application at hand and overcoming possible challenges. A very promising field of interest is agriculture, owing to its complex and dynamic environments. The aim of this study was twofold: (a) to develop a real-time skeleton-based recognition system for five hand gestures using a depth camera and machine learning, and (b) to enable a real-time human–robot interaction framework and test it in different scenarios. For this purpose, six machine learning classifiers were tested, while the Robot Operating System (ROS) software was utilized for “translating” the gestures into five commands to be executed by the robot. Furthermore, the developed system was successfully tested in outdoor experimental sessions that included either one or two persons. In the last case, the robot, based on the recognized gesture, could distinguish which of the two workers required help, follow the “locked” person, stop, return to a target location, or “unlock” them. For the sake of safety, the robot navigated with a preset socially accepted speed while keeping a safe distance in all interactions.
In the pursuit of optimizing the efficiency, flexibility, and adaptability of agricultural practices, human–robot interaction (HRI) has emerged in agriculture. Enabled by the ongoing advancement in information and communication technologies, this approach aspires to overcome the challenges originating from the inherent complex agricultural environments. Τhis paper systematically reviews the scholarly literature to capture the current progress and trends in this promising field as well as identify future research directions. It can be inferred that there is a growing interest in this field, which relies on combining perspectives from several disciplines to obtain a holistic understanding. The subject of the selected papers is mainly synergistic target detection, while simulation was the main methodology. Furthermore, melons, grapes, and strawberries were the crops with the highest interest for HRI applications. Finally, collaboration and cooperation were the most preferred interaction modes, with various levels of automation being examined. On all occasions, the synergy of humans and robots demonstrated the best results in terms of system performance, physical workload of workers, and time needed to execute the performed tasks. However, despite the associated progress, there is still a long way to go towards establishing viable, functional, and safe human–robot interactive systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.