In this paper, a new five-parameter distribution is proposed using the functionalities of the Kumaraswamy generalized family of distributions and the features of the power Lomax distribution. It is named as Kumaraswamy generalized power Lomax distribution. In a first approach, we derive its main probability and reliability functions, with a visualization of its modeling behavior by considering different parameter combinations. As prime quality, the corresponding hazard rate function is very flexible; it possesses decreasing, increasing and inverted (upside-down) bathtub shapes. Also, decreasing-increasing-decreasing shapes are nicely observed. Some important characteristics of the Kumaraswamy generalized power Lomax distribution are derived, including moments, entropy measures and order statistics. The second approach is statistical. The maximum likelihood estimates of the parameters are described and a brief simulation study shows their effectiveness. Two real data sets are taken to show how the proposed distribution can be applied concretely; parameter estimates are obtained and fitting comparisons are performed with other well-established Lomax based distributions. The Kumaraswamy generalized power Lomax distribution turns out to be best by capturing fine details in the structure of the data considered.
Every day, new data must be analysed as well as possible in all areas of applied science, which requires the development of attractive statistical models, that is to say adapted to the context, easy to use and efficient. In this article, we innovate in this direction by proposing a new statistical model based on the functionalities of the sinusoidal transformation and power Lomax distribution. We thus introduce a new three-parameter survival distribution called sine power Lomax distribution. In a first approach, we present it theoretically and provide some of its significant properties. Then the practicality, utility and flexibility of the sine power Lomax model are demonstrated through a comprehensive simulation study, and the analysis of nine real datasets mainly from medicine and engineering. Based on relevant goodness of fit criteria, it is shown that the sine power Lomax model has a better fit to some of the existing Lomax-like distributions.
Over the years, several researchers have worked to model phenomena in which the distribution of data presents more or less heavy tails. With this aim, several generalizations or extensions of the Lomax distribution have been proposed. In this paper, an attempt is made to create a hybrid distribution mixing the functionalities of the Nadarajah–Haghighi and Lomax distributions, namely the Nadarajah–Haghighi Lomax (NHLx) distribution. It can also be thought of as an extension of the exponential Lomax distribution. The NHLx distribution has the features of having four parameters, a lower bounded support, and very flexible distributional functions, including a decreasing or unimodal probability density function and an increasing, decreasing, or upside-down bathtub hazard rate function. In addition, it benefits from the treatable statistical properties of moments and quantiles. The statistical applicability of the NHLx model is highlighted, with simulations carried out. Four real data sets are also used to illustrate the practical applications. In particular, results are compared with Lomax-based models of importance, such as the Lomax, Weibull Lomax, and exponential Lomax models, and it is observed that the NHLx model fits better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.