Autoencoder-based anomaly detection approaches can be used for precluding scope compliance failures of the automotive perception. However, the applicability of these approaches for the automotive domain should be thoroughly investigated. We study the capability of two autoencoder-based approaches using reconstruction errors and bottleneck-values for detecting semantic anomalies in automotive images. As a use-case, we consider a specific highway driving scenario identifying if there are any vehicles in the field of view of a front-looking camera. We conduct a series of experiments with two simulated driving scenario datasets and measure anomaly detection performance for different cases. We systematically test different autoencoders and training parameters, as well as the influence of image colors. We show that the autoencoder-based approaches demonstrate promising results for detecting semantic anomalies in highway driving scenario images in some cases. However, we also observe the variability of anomaly detection performance between different experiments. The autoencoder-based approaches are capable of detecting semantic anomalies in highway driving scenario images to some extent. However, further research with other use-cases and real datasets is needed before they can be safely applied in the automotive domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.