Soil water characteristic curve (SWCC) is one of the most essential hydraulic properties that play fundamental role in various environmental issues and water management. SWCC gives important information for water movement, soil behavior, infiltration, and drainage mechanism, affecting the water circle and the aquifer recharge. Since most of the world’s freshwater withdrawals go for irrigation uses, decoding SWCC is beneficial, as it affects water saving through irrigation planning. Estimation of crucial parameters, such as field capacity (FC) and permanent wilting point (PWP) is the key solution for water saving. Modelling of the SWCC and hydraulic parameters estimation are of great importance, since the laboratory experimental procedures and the experiments in the field are often time-consuming processes. In the present study, the SWCC along with FC and PWP of two soil types were obtained via specific experimental procedures in the laboratory. In order to simulate the SWCC and estimate FC and PWP, the experimental data were approximated with van Genuchten’s model. Results showed that using SWCC to estimate FC gives excellent results, while the method rationally overestimates the PWP. Hence, the presented method leads to estimation of crucial hydraulic parameters that can be used in irrigation planning and water saving practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.